
www.naspa.com • January/February 2005 • Network Support

Monitoring Linux with
Native Tools—Part One

By R ob e r t A n d re s e n

LINUX
is gaining interest as a solution across many hardware
platforms: x86-based machines, Sun and Apple pro-

prietary hardware and IBM zSeries platforms. But once applications are
ported to an open source operating system, what options are available to
monitor their performance and availability? The first section of this arti-
cle covers native Linux solutions for monitoring performance and col-
lecting statistics for capacity planning and will look at tools ranging from
real time monitors through those that can build a database of historical
system performance. The second section of this article, which will
appear in the March/April issue, will conclude the review of tools.

REASONS TO MONITOR

Before Linux can run production applications, however, there will
be the requirement to monitor its performance. There are ultimately
two different purposes to monitoring any computer system, which
basically map onto two different systems management functions.
Systems administrators or systems programmers care more about the
installation, tuning and troubleshooting of systems under their control.
Capacity planners care more about building a performance database to
analyze and predict resource consumption over time, looking to predict
growth and upgrades required to sustain that growth.

Because of this difference of purpose, these groups will require
different tools, though there are definite areas of overlap. Systems
management generally requires tools to show what is happening
right now, whereas capacity planning tends to be more concerned
with trending resource usage to recognize growth and future bottle-
necks over time.

There is overlap, of course, since you cannot do systems manage-
ment trouble-shooting without understanding acceptable ranges of
systems performance metrics. So, where the capacity planning function
needs historical metrics to predict future growth bottlenecks, the sys-
tems management function needs similar historical data to understand
what to look for in the metrics, and which values are an indication of a
performance problem.

METRICS TO MEASURE

Ultimately, what the metrics systems administrators care about are
much the same as for any computer system. They need to measure use
of all physical resources, the usual suspects for x86 and zSeries:

� CPU utilization
� Memory
� Disk devices and controllers
� Network devices

They also need to measure use of system-level resources that may
affect performance and capacity:

� Paging
� Swapping
� Inter-process communication constructs

There may be more system-level resources depending on the appli-
cations in use, e.g. database locks, but these monitors tend to be part of
application support packages.

CPU UTILIZATION:

There are several measurements for CPU utilization, the percentage
of available CPU being used, and the use by different states. The four
CPU states in Linux are:

� User: Application use of CPU
� System: CPU used by kernel functions such as I/O

or network
� Idle: CPU not being used, available for additional work
� Nice: User CPU use where the process has voluntarily

lowered its priority to allow higher priority work
to run

n e t wo r k s u p p o r t > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Virtualization
Virtualized systems can affect CPU utilization measurements. Linux

may not be running on the “bare metal” of the machine. It may be
running in a virtual machine managed by VMWare (x86 platforms) or
zVM (IBM zSeries platforms). This may cause the CPU percent num-
bers to be inaccurate. Linux may think it is running 80% of the CPU,
but the virtual machine it is in may only be given 10% of the real CPU
by the virtual machine manager. In this case the Linux instance would
be consuming 8% of the real CPU.

For this reason, it becomes necessary to measure CPU percentages
allowed by the virtualization manager, and then prorate the CPU per-
centages reported in each Linux by this amount. Getting the percentage
with which to prorate will depend on the virtualization manager.
VMWare can run on the bare metal of the machine, or under another
operating system such as Windows or Linux. zVM provides this data
and is available in a number of monitoring packages.

Memory
Linux uses both real memory and swap files, similar to virtual memory.

Usually on an x86 platform the swap file is defined as twice the amount
of real memory. On zSeries it turns out to be a mistake to over-allocate
memory to the Linux systems in zVM, as the memory will be used up and
cause additional paging at the zVM level. The recommendation is to give
each Linux instance as little memory as it can get by on.

If a Linux system needs more real memory than is available it will
use its swap file to free up some memory to allow another process’
memory to be resident in real. At some point this swapping turns into
thrashing, where a process gets swapped in, can’t finish what it needs
to do and is swapped out again.

Attempting to run X-Windows on a machine with not enough mem-
ory is a classic example of this. X-Windows spawns a number of
processes that use up all the real memory and get swapped out by
Linux. None of these processes get any of the work they intend to do,
as Linux is using the entire CPU reading pages in and writing pages
out. The goal should be to measure this activity and have enough real
resources to match the anticipated application workload.

Disk Devices and Controllers
I/O is a major reason for delay on any platform and operating sys-

tem. The old saying is that no matter how fast the processor, they all

wait at the same speed. I/O operations tend to tie up the device and the
controller for the life of the I/O. If other processes want access to the
same device they will wait. As I/O increases, it is important to identify
high-use file systems and balance them across multiple devices and
controllers, if possible.

Network Devices
For most applications, there are increasing degrees of magnitude in

delays caused by CPU (microseconds), disk (milliseconds) and network
(tenths if not multiple seconds). Therefore, eliminating network bot-
tlenecks may improve performance far more than fixing CPU or disk
bottlenecks. Before bottlenecks may be eliminated, they must first be
measured and identified. Important metrics include traffic by network
device over time, as well as error retransmits and collisions.

TYPES OF TOOLS

Now that you know what to measure, we’ll look at four different
types of tools used by systems programmers for understanding the per-
formance of the Linux system:

� Real time displays Automatically refreshing system
performance metrics

� Static commands Displays a snapshot of system
performance metrics

� /proc filesystem Pseudo-filesystem that contains
these metrics

� sysstat project Linux project to display and collect
these metrics

(Note: /proc filesystem and sysstat project will be covered in the
second part of this article.)

REAL TIME DISPLAYS

top
The first example is the top command. Top is an auto-refreshing list

of the processes using the most CPU. By default, it sorts them by CPU
use. You may change the sort order, fields displayed and refresh rate
either interactively or by configuration. See FIGURE 1.

Network Support • January/February 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

8:28pm up 28 min, 2 users, load average: 0.00, 0.06, 0.16
102 processes: 99 sleeping, 2 running, 1 zombie, 0 stopped
CPU states: 0.7% user, 1.5% system, 0.0% nice, 97.6% idle
Mem: 1031408K av, 577164K used, 454244K free, 0K shrd, 55344K buff
Swap: 514072K av, 0K used, 514072K free 265008K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 7060 rda 15 0 11876 11M 10476 R 0.5 1.1 0:00 kdeinit
 1483 root 15 0 55744 11M 3064 S 0.3 1.1 0:06 X
 1615 rda 15 0 9864 9860 9048 S 0.3 0.9 0:01 kdeinit
 7093 rda 15 0 996 996 784 R 0.3 0.0 0:00 top
 6957 rda 15 0 50812 49M 40272 S 0.1 4.9 0:06 soffice.bin
 1 root 15 0 480 480 428 S 0.0 0.0 0:04 init
 2 root 15 0 0 0 0 SW 0.0 0.0 0:00 keventd
 3 root 15 0 0 0 0 SW 0.0 0.0 0:00 kapmd
 4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0
 5 root 15 0 0 0 0 SW 0.0 0.0 0:00 kswapd
 6 root 25 0 0 0 0 SW 0.0 0.0 0:00 bdflush
 7 root 15 0 0 0 0 SW 0.0 0.0 0:00 kupdated
 8 root 25 0 0 0 0 SW 0.0 0.0 0:00 mdrecoveryd
 12 root 15 0 0 0 0 SW 0.0 0.0 0:00 kjournald
 91 root 15 0 0 0 0 SW 0.0 0.0 0:00 khubd
 651 root 16 0 736 736 632 S 0.0 0.0 0:00 dhcpcd
 780 root 15 0 540 540 460 S 0.0 0.0 0:00 syslogd

FIGURE 1: TOP COMMAND FIGURE 2: XLOAD

Important fields to look at include:
Load average: These three numbers show

the number of runable processes in the CPU
queue over the past minute, five minutes and
fifteen minutes. These numbers need to be
compared to the number of CPUs available for
that Linux instance.

CPU states: Shows the percentage of each
of the four possible CPU states.

Mem & Swap: Shows how much real mem-
ory and swap space is available, in use and
free. Also memory used for buffers, cache and
shared memory (one of the interprocess com-
munication options) is shown.

Process information: This covers the
process number, owning user, priority, nice
value, size (code + data + stack space), RSS
(total amount of physical memory), shared
memory in use, status (running, sleeping, nice
value, swapped), %CPU being used,
%Memory being used, CPU time since task
has started, and command issued to start the
process.

A common debugging use of top is when
the CPU spikes, watch the output of top to see
which process is causing the spike. That
process may be stopped with a kill command.

xload
Xload is a graphical representation of CPU

load. You may set the colors and refresh rate.
See FIGURE 2.

It is more of an operational warning than a
performance tool.

vmstat
Gives information about processes, memory, paging, block IO, traps

and CPU activity. Do not confuse this with zVM, no native Linux tools
know about zVM. See FIGURE 3.

The –n 5 parameter says refresh every 5 seconds. The first line pro-
duced gives averages since the last reboot. Additional lines give
information on a sampling period of length delay. The process and
memory reports are instantaneous in either case. The fields mean:

procs: r- number of processes waiting to run
b- number in uninterruptible sleep
w- swapped out, but otherwise runnable
memory: swap, free, buffers, cache
swap: swap ins, swap outs
io: blocks in, blocks out
system: interrupts per second (includes clock), context switches

per second
cpu: user, system, idle
vmstat excludes itself from the statistics it presents.

STATIC COMMANDS

The static commands only give a snapshot of what is happening at the
time the command was issued, they do not refresh. They may be re-issued

if you want to see how the metrics are changing, or they may be invoked
by shell scripts and the output stored in files for historical analysis later.

uptime
Uptime shows the same information as the first line of top: how long

the system has been running and the load average numbers:

8:40pm up 40 min, 2 users, load average: 0.03, 0.06, 0.10

free
Displays similar information as the top Mem & Swap sections. See

FIGURE 4.

ps
Displays the running processes according to the authority of the

issuer and the parameters used. This is more of a performance diag-
nostic tool than performance reporting. See FIGURE 5.

This example (with the –f option) shows: user, process id, parent
process id, child count, start time, associated terminal device, CPU
time and command.

netstat
Displays network statistics with many different options to choose

from. Common parameters are routes, interfaces and statistics. Netstat

www.naspa.com • January/February 2005 • Network Support©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

[rda@localhost rda]$ vmstat -n 5
 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
 0 0 0 0 536828 61192 254416 0 0 22 13 155 313 2 1 97
 1 0 0 0 536828 61192 254416 0 0 0 7 279 224 1 0 99
 0 0 0 0 536828 61192 254416 0 0 0 3 279 222 0 0 99
 0 0 0 0 536828 61192 254416 0 0 0 3 278 221 0 1 99
 0 0 0 0 536828 61192 254416 0 0 0 19 349 492 1 1 98

FIGURE 3: VMSTAT

 total used free shared buffers cached
Mem: 1031408 503616 527792 0 69076 242780
-/+ buffers/cache: 191760 839648
Swap: 514072 0 514072

FIGURE 4: FREE

UID PID PPID C STIME TTY TIME CMD
rda 2315 2313 0 09:04 pts/3 00:00:00 /bin/bash
rda 2838 2315 0 10:28 pts/3 00:00:00 xload -fg red -bg white
rda 2910 2315 0 10:46 pts/3 00:00:00 ps -f

FIGURE 5: PS

[root@localhost init.d]# netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
172.25.167.0 * 255.255.255.0 U 40 0 0 eth0
127.0.0.0 * 255.0.0.0 U 40 0 0 lo
default 172.25.167.1 0.0.0.0 UG 40 0 0 eth0

[root@localhost init.d]# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 30080 0 0 0 16393 0 0 0 BMNR
lo 16436 0 10563 0 0 0 10563 0 0 0 LRU

FIGURE 6: NETSTAT

is also more of a diagnostic tool than performance reporting device. See
FIGURE 6.

RX: received, TX: transmitted, OK, Error, Dropped, OVR (unable to
transmit).

As Linux has become more stable and feature-rich, more and more
shops are using it. The metrics and tools mentioned in this article will
help IT gain more out of what they have and how they use it. The sec-
ond part of this article, which will appear in the March/April issue, will
discuss the remaining tools including /proc filesystem and sysstat proj-
ect.

Robert Andresen is a Principal Software Consultant with BMC Software in
Chicago. He has been with BMC Software for five years, coming to BMC
Software as part of their acquisition of Boole and Babbage. Andresen has
been working with Linux since 1995 and is a co-author of the IBM Redbook:
Linux on IBM @server zSeries and S/390: System Management. He holds a
degree in Mathematics from the Illinois Institute of Technology.

At BMC Software he is focused on the MAINVIEW series of zSeries solution
as well as PATROL solutions for Windows, Unix and MQSeries, providing
installation and implementation services. His areas of expertise include z/OS,
CICS, DB2, MQSeries, Networking and Unix.

Network Support • January/February 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

