
Network Support • January/February 2005 • www.naspa.com

PHP v5 Gets Serious About
Objects—Part One

By S c o t t C o u r t n ey

IN case anyone hasn't seen my previous articles, I'm a bit of a PHP
advocate. I'm not rabid about it, but I've found PHP to be one of

the most useful languages around, not only for web sites but also for
general-purpose scripting. PHP especially shines when you need to
access the APIs of other systems, such as the LDAP or the GD or
ImageMagick graphics libraries. It's easy to use, well documented, and
very fast. I like it better than Perl or C (personal preference; your
mileage may vary) for web work, and I use it for general-purpose
scripting simply because I like being able to reuse code from my web
applications within the cron jobs and other shell-invoked utilities that
support those apps.

All that being said, you may be surprised to learn that PHP is not my
favorite language. Java, the fully object-oriented language from Sun
Microsystems, holds that honor. The reasons for this are very simple:
PHP's handling of object-oriented (OO) programming has been anemic
at best. With version 5.0, recently released, PHP's object-oriented fea-
tures have beeen vastly improved. In this article, we'll take an in-depth
look at the new features and why they are important. Rather than rein-
venting the proverbial wheel, PHP's developers are "seeing further by
standing on the shoulders of giants." In this case, one of those giants is
Java, and programmers used to Java will notice many familiar features
in the new PHP.

This is Part One of a two-part article; the second installment will be
published next issue.

REVIEW OF OO CONCEPTS

Object-oriented programming (OOP) is an approach that attempts to
make the structure of a program closely follow the way the human
mind organizes knowledge, extrapolating from a general concept to
more specific concepts. For example, if you know how to drive an
automobile and a pickup truck, you will have very little "learning
curve" if you get behind the wheel of a minivan. The reason is that the
mind groups these four-wheeled motor vehicles into a more generic

knowledge category, or "class," and for each individual case adds only
the knowledge that differs from the others. In OOP, your code works
the same way by defining a parent "superclass" for each generic object
type (such as Four Wheeled Vehicle) and then defining child "sub-
classes" for each individual object type (Minivan, PickupTruck,
Sedan). The subclasses "inherit" all of the code from the superclass,
except where the subclass explicitly defines new functionality or over-
rides the parent's implementation of a function. This is the concept
of "inheritance."

Another important OO concept is "encapsulation." The notion of
"information hiding" is important when developing modular, reusable
software components. The idea is that each module exposes only the
"public" parts of itself, revealing what it can do but not how the func-
tionality is implemented internally. This insulates other parts of a
system from internal changes to fix bugs or improve performance,
and it facilitates team programming because the coupling between
modules is looser. Encapsulation also means that the code to imple-
ment a feature, as well as the state variables for each "instance" of an
object of that type, are contained within the object module itself. An
object's behavior and the information about each particular object of
that class are unified, not separated.

The third fundamental OO concept is "polymorphism." Put simply,
this means that an instance of a subclass can be safely treated as if it
were an instance of any of its ancestor superclasses. For example, suppose
we have a generic class "Vehicle" with subclasses of "WheeledVehicle,"
"Aircraft," and "Boat." The Vehicle class understands and implements
only behaviors that are common to all vehicles, such as keeping track
of their speed, location, direction, and perhaps a few other things.
Aircraft adds the notion of altitude and climb/descent rate, something
not applicable to most other vehicle types. Polymorphism means that
if I create an instance of Aircraft, I can pass a reference for that
instance to a function that only knows about Vehicles, and the function
will accept that reference and behave sensibly. Polymorphism is
extremely important, because it allows subclasses to be used to extend

n e t wo r k s u p p o r t > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

the behavior of existing application classes without having to modify
the application itself to understand the new subclasses. An off-the-shelf
application that works with the Aircraft class will also accept my new
custom Helicopter subclass of Aircraft without complaining.

PHP has supported inheritance and polymorphism for quite some
time, but until now it has been weak in the area of encapsulation. In
addition, PHP has lacked some of the nice convenience features of Java
and other fully object-oriented language. Version 5 of PHP goes a long
way toward closing the gap.

Traditionally, Java programmers speak of "methods" where PHP pro-
grammers speak of "functions." This is largely due to the fact that Java
is a pure OO language, whereas PHP can be used OO or procedurally.
In the newer PHP 5 documentation, the term "method" is beginning to
appear for functions that occur inside an object class. This article will
use the terms interchangeably, as is common practice in the PHP world.

VARIABLE AND FUNCTION VISIBILITY

Before version 5, PHP had no way of hiding variables or functions
inside an object class. In other words, the entire notion of an object
exposing only what it can do but not how it does so was a matter of
mutual agreement between the class developer and the programmer
who uses the class in an application. It has become common practice for
PHP programmers to use an underscore (_) at the beginning of a vari-
able or function name to indicate that applications should not directly
refer to that entity. Comments in the code also are used to indicate this,
but the class creator has no way of ensuring that the class user will read
the comments. In PHP 5, new language keywords allow the creator of a
class to hide or expose variables as appropriate to the application.

The visibility keywords are public, protected, and private, and they
essentially work as they do in Java. As you would expect, a public
entity can be accessed from inside or outside the object class without
restriction, and a private entity can be accessed only within the class
itself. Entities that are marked protected can be accessed from within
the class itself or from within any subclasses (or sub-subclasses, etc.)
of that class.

FIGURES 1 and 2 illustrate how a simple class differs between PHP 5
and earlier versions.

Protected variables are a sort of intermediate level of trust, a way to
expose internal features in a limited way so that subclasses can be more
efficiently implemented. Private variables are invisible outside their
declaring class and cannot even be accessed by subclasses.

In PHP 5, the old style declaration of "var $some_name" is no
longer valid. For backward compatibility, it is treated as "public
$some_name" with a warning issued. PHP 5 also includes support
for visibility declarations on methods (functions), which works the
same way as on variables.

Subclasses can broaden the visibility of methods they override, but
cannot tighten it. That is, if the parent method is public then the sub-
class must also be public, whereas if the parent method is protected
then the subclass method can be protected or public, but not private—
and so on.

CONSTRUCTORS AND DESTRUCTORS

In PHP 5, constructors (the functions invoked as an object instance
is created) have changed significantly, and destructors (functions
invoked as an instance is destroyed) are a new feature.

Constructors used to be defined by declaring a function within a
class whose name was the same as the name of the class. Now, however,
the correct method is to define a function called __construct() (with
two leading underscores in its name). As with the old constructors,
the parameter list can be empty or can have any number of required
and/or optional parameters. Also, the behavior of PHP with regard to
parent constructors has not changed: they are still not automatically
invoked. This is an important difference between PHP and Java. PHP
does, however, provide the ability to call the parent constructor using
this syntax:

parent::__construct(... parameters here, if any ...);

Simply put this statement within the constructor of the subclass. The
new __construct() syntax makes it easier to refactor large class
libraries, because previously one would have had the name of each
class' parent appearing in the parent constructor call. Now, the parent
constructor call is truly generic and does not need to be edited if the
class gets a different parent.

Destructors are functions named, appropriately enough, __destruct()
(again, with two leading underscores). They are invoked automatically
by PHP when all references to the object instance have been removed
or when an object is explicitly destroyed. Destructor functions are use-
ful for providing unconditional cleanup behaviors, such as writing mes-
sages to a log or closing files, network sockets, database connections,
and so on. As with constructors, the parent destructor is not automati-
cally invoked, but you can use the syntax:

parent::__destruct();

to accomplish this in your code if needed. In general, invoking parent
constructors and destructors in your code is considered good form,
unless you have a good reason not to do so because of unwanted side
effects in the parent class' implementation of these functions.

STATIC VARIABLES AND FUNCTIONS AND
OBJECT CONSTANTS

By default, most variables belong to, and functions act upon, an
instance of an object class, rather than upon the class itself. The static
keyword allows you to override this, creating variables that exist only
once per class regardless of how many instances of that class are cre-
ated.

A static function is one that can be safely called without any
instances of the object existing, but which is restricted from access-
ing an implicit instance using $this. Static functions are often used
for utility or convenience features that do not depend on an instance
of the class. For example, a class having to do with databases might
have a generic static function that creates an SQL clause such as " IN
(value1, value2)" given an array of values. That function stands
alone and does not depend on a database connection because it does

www.naspa.com • January/February 2005 • Network Support©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Webliography
PHP Home Page http://www.php.net/
PHP Online Manual (English) http://www.php.net/manual/en/
PHP 5 Objects http://www.php.net/manual/en/language.oop5.php

not in itself act on the database; ergo, it is a
good candidate for a static function.

Static variables and functions are declared
simply by adding the static keyword immedi-
ately before their name and after any other
modifiers such as protected or public.

Static functions are invoked using the scope
resolution operator, ::, rather than the derefer-
ence operator, ->.

Object constants are closely related to static
variables, except that they are defined and ini-
tialized at compile time, and they do not use
the "$" symbol.

COMING UP NEXT

Next time, we will examine several new
PHP features that support more robust OO
design, moving beyond basic classes to more
advanced OO concepts.

NaSPA member Scott Courtney is a senior engi-
neer with Sine Nomine Associates, an engineer-
ing consulting company. His career has included
fifteen years in engineering and IT at a large
manufacturing company. He also worked as a
technical journalist and editor for an online pub-
lisher for one year. Scott is an active open source
developer in both PHP and Java languages and
maintains a number of production Web sites
using open source tools.

Network Support • January/February 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

class MyClassOld extends YourClass {

// This variable is public
var $database_name;
// This one is private or protected by convention, but not enforced as such by PHP
var $_widget_count;

// This is how apps are *supposed* to obtain the count of widgets
function getWidgetCount() {

return $this->_widget_count;
}

}

// Create an object
$myobject =& new MyClassOld();
// So far no problem...access a public variable
$myobject->database_name = "mysql://joeuser:bigsecret@localhost/accountingdb";
// But now things go awry, as we access the private variable. ** WRONG **
print "We have made " . $myobject->_widget_count . " widgets so far.\n";

FIGURE 1: IMPLEMENTING A PROTECTED VARIABLE THE OLD WAY. THE LAST LINE OF CODE
WILL GENERATE NO COMPILER ERROR, BUT CODE LIKE THIS MAY CAUSE THE MYCLASSOLD
OBJECT TO MALFUNCTION BECAUSE THE DEVELOPER OF THAT CLASS DIDN'T PLAN FOR
DIRECT ACCESS TO $_WIDGET_COUNT BY APPLICATIONS.

class MyClassNew extends YourClass {

// This variable is public
public $database_name;
// This one is protected by the PHP runtime
protected $widget_count;

// This is how apps obtain the count of widgets
public function getWidgetCount() {

return $this->widget_count;
}

}

// Create an object
$myobject =& new MyClassNew();
// So far no problem...access a public variable
$myobject->database_name = "mysql://joeuser:bigsecret@localhost/accountingdb";
// This line will generate a compile-time error. ** WRONG **
print "We have made " . $myobject->widget_count . " widgets so far.\n";

FIGURE 2: A PROTECTED VARIABLE IN PHP 5. PROTECTION IS ENFORCED BY THE COMPILER,
SO THE LAST LINE WILL GENERATE AN ERROR DURING COMPILATION.

