
Network Support • March/April 2005 • www.naspa.com

PHP v5 Gets Serious
About Objects: Part Two

By S c o t t C o u r t n ey

IN the first installment of this two-part
article, we looked at some of the inter-

esting new features for object-oriented (OO)
programming in PHP version 5. This new ver-
sion introduces OO features that put PHP's object
support in the same league as Java and other OO
languages, although PHP is still (by choice and
by design) not a "pure" OO language.

This month, we will look at some of the
more advanced OO features in the new
PHP—tools that not only help with basic
object-oriented programming, but which also
help the designer to model the problem in
more elegant ways. If you are new to PHP
and/or new to OO programming (OOP), you
may want to read Part 1 of this article before
delving into the material that follows.

INTERFACES

Whereas a class defines and implements the
behaviors and data members of an object, an
interface simply specifies available function-
ality without providing details on how it is
implemented. Think of an interface as a con-
tract that represents an agreement that any
code that claims to implement the interface
will provide certain functions.

In PHP, as in Java, interfaces are defined
very much like classes except using the inter-
face keyword instead of the class keyword. The
interface body does not contain any executable
code, but rather only the function declarations
that are mandated by its contract. Any class

n e t wo r k s u p p o r t > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

interface GoGetterWidget {

function getSomething($what);

function getAnotherThingy($what);

function getDefaultThing();

}

class ClassOne extends YourAppClass implements GoGetterWidget {

function getSomething($what) {
return "I am getting " . $what;

}

function getAnotherThing($what) {
return $what . " has turned into something else!";

}

function getDefaultThing() {
return "";

}
}

class ClassTwo extends SomeOtherClass implements GoGetterWidget {

function getSomething($what) {
return "I am getting a better thing: " . $what;

}

function getAnotherThing($what) {
return $what . " has mutated into something new!";

}

function getDefaultThing() {
return "DEFAULT THING";

}
}.

FIGURE 1: INTERFACES ALLOW A CLASS TO DECLARE "I AM A ..." WITHOUT NECESSARILY
INHERITING FROM ANY SPECIFIC BASE CLASS

can then declare that it implements the interface, but doing so requires that
the class declare and implement all of the interface's mandated functions.
FIGURE 1 provides an illustration of declaring and using an interface.

Interfaces are often used to specify very generic functionality not
related to a specific application. For example, an interface could indicate
that collection-type objects know how to sort themselves (by specifying
a sort() method) without getting into the details of what sorting algorithm
is used, or what the concept of "sorting" means in the context of complex
data types that may not have an obvious sequence. An interface with no
methods specified can also be used as a true/false flag to indicate an
object's suitability for some meta-operation, such as serialization or
multi-thread safety. An interface is, to some extent, similar in purpose
(but not structure) to the "mix-in" classes supported by other languages.

ABSTRACT CLASSES

Another major new OO feature in PHP is abstract classes. An
abstract class is a class with only partial implementation of its behav-
iors, relying on subclasses to actually implement those functions. This
situation often occurs in applications where a class library exposes a
generalized superclass to applications, but relies on subclasses of that
to actually do the detail work. For example, there are many ways to
send a file from one computer to another on the Internet. An abstract
class to define this capability might look like the one in FIGURE 2.

The value of an abstract class is that it allows the designer of a class
library to create a framework for how a family of objects should
behave, without necessarily having the details of their implementation.
Generally, the abstract class at the top of an inheritance tree represents
an abstract concept in the real world.

Since abstract classes cannot be instantiated, they are also very use-
ful for creating utility "helper" classes that have only static methods and
static data members. Such classes offer an object-oriented way to build
a library of utility functions that contain no stateful data—in other
words, to sneak a bit of non-OO code into an application that is other-
wise purely objects, without breaking the OO paradigm.

Any class that has at least one abstract method must be declared an
abstract class.

CHOOSING BETWEEN INTERFACE AND
ABSTRACT CLASS

It can be confusing to choose between defining an interface and
defining an abstract class, because the two concepts are very similar. In
general, use an interface to indicate functionality or features that exist
within a class but which are not its primary purpose. Use an abstract
class to define primary features of a class inheritance tree without
implementing them at the top level.

As an example, consider a sophisticated network connection manage-
ment library that supports all kinds of protocols as well as managing con-
nection daemons, pools of open sockets, worker threads, thread pooling,
and other concepts often found in large-scale network applications. The
designer might use abstract classes (not inheriting from one another) to
define the fundamental behaviors of objects in the system, e.g.,
NetDaemon, NetThreadPool, NetThread, NetConnection, NetServer,
NetClient, and so on. Now, suppose for logging purposes the designer
decides that these objects need to be able to be assigned names, perhaps
from a startup configuration file and/or a command line invocation param-
eter, or simply generated programmatically (e.g., "Thread001",

"Thread002", and so on) from the class name. The designer creates an
interface like the one in FIGURE 3 to indicate that an object can be named.

Notice that the interface does not specify how the name is stored, or
even whether it is stored. Perhaps some classes implement a setName()
function to allow applications to assign a name, whereas others simply
return an internally-generated name for the getName() function.

In the network library example, there is also likely to be a need to have
certain classes keep track of how many of their instances have been created,
and perhaps assign default names (which can be overridden by the applica-
tion if desired) at the time of instance creation. An interface such as
InstanceCountingObject might be created, using static variables and static
functions to maintain an internal one-per-class counter of the instances as
they are created. Clearly, behaviors such as "this object can be named" or
"this class counts its instances" are not related to the goal of the application,
as they have nothing to do with network protocols, clients, or servers. Thus,
these meta-behaviors are very good candidates to be declared with interfaces.

Another very simple way to decide between an interface and an
abstract class is: "Does the thing you are declaring need to implement
part of its own logic, or just define what logic will exist?" Since
abstract classes can contain some concrete method implementations,
and interfaces cannot, the need for actual logic in the declaration may
force a designer's hand. Likewise, if the thing being declared needs to
be applied to multiple classes which are not ancestrally related to one
another, an interface may be the only sensible alternative.

OVERLOADING

PHP 5 provides a totally new feature called overloading, basically a
set of predefined "hooks" into PHP's internal runtime logic. A detailed
discussion of these hooks is beyond the scope of this article, but they
are documented in the PHP online manual at http://www.php.net/
manual/en/language.oop5.overloading.php. Overloading allows an
object designer to intercept applications' attempts to access variables or
methods that do not exist. Instead of generating an error message, the
__get(), __set(), and __call() hooks allow the object to actually imple-
ment the functionality programmatically. This can be useful when an
object must support a large number of methods or variables that are all
cookie-cutter replicas of one another but with different names.

OTHER NEW FEATURES

PHP 5 adds some advanced OO features that may be familiar to
developers in Java or other OO languages, but which are beyond the
scope of this article to discuss in detail.

The new PHP 5 runtime can iterate through an object's public vari-
ables using the foreach keyword, as if they were an associative array.
Also, a class can declare itself to implement Iterator or
IteratorAggregate; in doing so, it is able to provide customized imple-
mentation behavior that will automatically be invoked when the fore-
ach statement is executed.

PHP 5 also has introspection and reflection, which provides a way
for applications to examine object classes at runtime to determine their
characteristics (Does method so-and-so exist in this object? Is this object
an implementer of a certain interface?) Java programmers have used
reflection to create very smart classes that can adapt themselves to
complex data types at runtime; now a similar capability is available in
PHP. Reflection is also extremely useful when writing tools such as
performance profilers and debuggers.

www.naspa.com • March/April 2005 • Network Support©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

The instanceof keyword now provides a
very easy way to interrogate an object at run-
time to see if it is a member of a specified
class or one of its subclasses, or implements a
specific interface. This keyword is used in a
logical expression, such as shown in FIGURE 4.

Polymorphism applies to the instanceof
logic. If YourClass extends MyClass and $foo
is an instance of YourClass, then "$foo
instanceof MyClass" will also be true.

If, as is often the case, you want an error
like this to be treated as fatal, then the new
object type hint syntax can be used in the func-
tion header to provide an equivalent result. In
FIGURE 4, the declaration "function tweedle-
dum(MyClass $foo)" would have provided
essentially equivalent behavior without the
need for the if logic. The if logic and
instanceof test are more flexible, however,
and are needed in case you want to handle the
error programmatically rather than allowing
the runtime to terminate the program.

FINALLY...

It is only fitting that the last feature discussed
in this article should be the final keyword. Like
its Java counterpart, final can be applied to a
class or method to indicate that subclasses may
not override the declaration. A method that is
final is inherited by subclasses but cannot be
overridden. If an entire class is declared final,
then that class cannot be subclassed at all.

CONCLUSION

Object oriented programming can, of
course, be accomplished even in languages
that have no specific support for OO. It's a
matter of programmer mindset more than lan-
guage syntax. On the other hand, having
strong OO support in a language certainly
eases the job of a programmer who wishes to
model the problem using objects. The more
work that can be done automatically by the
compiler and the runtime environment, the
less work is needed from the programmer, and
the lower the chance for human-induced error
due to tedium.

OO extensions almost always add overhead
to the runtime, and if not used sensibly, can
hurt performance. It's too early to say how
much, if at all, PHP 5's new OO features will
impact performance, but the history of PHP
suggests that its developers will have worked
long and hard to ensure that the new features
do not degrade the high performance we have
come to expect from the language.

WEBLIOGRAPHY

PHP Home Page http://www.php.net/
PHP Online Manual (English) http://www.php.net/
manual/en/
PHP 5 Objects http://www.php.net/manual/
en/language.oop5.php

NaSPA member Scott Courtney is a senior engi-
neer with Sine Nomine Associates, an engineering
consulting company. His career has included fif-
teen years in engineering and IT at a large man-
ufacturing company. He also worked as a techni-
cal journalist and editor for an online publisher for
one year. Scott is an active open source developer

in both PHP and Java languages and maintains a
number of production Web sites using open
source tools.

Network Support • March/April 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

// $foo is supposed to be an instance of MyClass, but we
// can't guarantee what the application might send us, so
// we check it at runtime.
function tweedledum($foo) {

if ($foo instanceof MyClass) {
// ... Do whatever we are supposed to do

} else {
die("Argument to tweedledum() must be a MyClass object.\n");

}
}

FIGURE 4: USING THE INSTANCEOF KEYWORD TO CHECK A FUNCTION'S ARGUMENT FOR
CORRECT TYPE

abstract class FileMover {
protected $src;
protected $dst;

public function __construct($sourcefile, $destfile) {
$this->src = $sourcefile;
$this->dst = $destfile;

}

// Subclasses should override this method to start the
// file transfer using some underlying network protocol.
// The method should return 0 for success or an integer
// error code in case of failure.
public abstract function startTransfer($max_wait_seconds);

// Subclasses may override this method to abort a transfer
// in progress, if the underlying protocol supports that.
// The default implementation does nothing, and returns
// FALSE to indicate that the transfer was not stopped.
public function abortTransfer() {

return FALSE;
}

}.

FIGURE 2: A SIMPLE EXAMPLE OF AN ABSTRACT CLASS, WITH ONE ABSTRACT METHOD
THAT MUST BE OVERRIDDEN, AND ONE CONCRETE METHOD THAT MAY BE OVERRIDDEN

interface NamedObject {

// This function returns the instance's name as a string
public function getName();

}

FIGURE 3: THIS INTERFACE IS APPLIED TO OBJECTS WHOSE INSTANCES CAN BE ASSIGNED
A HUMAN-FRIENDLY NAME

