
www.naspa.com • March/April 2005 • Network Support

Monitoring Linux with
Native Tools: Part Two

By R ob e r t A n d re s e n

IN last month’s article we discussed native
Linux solutions for monitoring per-

formance and collecting statistics for capacity
planning. We covered the reasons to monitor
Linux performance in order to meet the different
needs of system administrators and capacity
planners. We also covered several metrics to
measure this performance including CPU
Utility, memory, disk device and controllers, and
new devices, and two types of tools to do so,
including Real Time Displays and Static
Commands. In the second part of this article, we
will cover /proc filesystems and sysstat project
and how they help monitor Linux performance.

/PROC FILESYSTEM

The first tool we’ll cover is the /proc
filesystem. Below is a pseudo-filesystem used
to access kernel performance metrics as well
as to update some kernel parameters. Scripts
or programs may access this data merely by
reading the appropriate files.

For example, if we do a directory listing for
/proc, we see an entry for every running
process, as well as entries for system level
metrics. See FIGURE 1.

Each number represents a running process,
the names are system metrics from the kernel.
If we were to look at /proc/stat we would see
FIGURE 2.

The main page for proc shows all the values
by file within /proc. For /proc/stat it shows
FIGURE 3.

As you can see, these files are not user-
friendly displays for diagnostic purposes.
They are better suited to be accessed by pro-
grams or scripts which strip out needed met-

rics. They are where the other tools discussed
in this paper get their metrics.

FIGURE 4 shows what is available for a run-
ning process.

n e t wo r k s u p p o r t > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

[root@localhost proc]# pwd
/proc
[root@localhost proc]# ls
1 1282 1333 1538 1591 1667 2262 91 ide mtrr
1015 1283 1354 1541 1592 1668 2345 945 interrupts net
1037 1284 1381 1544 1595 1669 2353 948 iomem partitions
1067 1285 1400 1546 1598 1670 3 apm ioports pci
1086 1286 1426 1557 1637 1671 4 bus irq scsi
1104 1287 1427 1558 1644 1672 5 cmdline kcore self
1160 1288 1428 1568 1646 1989 6 cpuinfo kmsg slabinfo
1184 1289 1429 1569 1659 2 650 devices ksyms stat
12 1290 1430 1571 1660 2000 7 dma loadavg swaps
1217 1291 1431 1572 1661 2013 737 dri locks sys
1232 1292 1432 1574 1662 2014 742 driver mdstat sysvipc
1255 1293 1439 1579 1663 2015 763 execdomains meminfo tty
1278 1300 1441 1580 1664 2016 791 fb misc uptime
1280 1301 1442 1587 1665 2024 8 filesystems modules version
1281 1315 1459 1589 1666 2259 881 fs mounts

FIGURE 1: RUNNING PROCESS AND SYSTEM LEVEL METRICS

[root@localhost 2]# cat /proc/stat
cpu 12412 70 2968 506115
cpu0 12412 70 2968 506115
page 232980 82619
swap 1 0
intr 749494 521565 8314 0 17 6 2 6 3 1 3 2 96434 72512 0 25308 25321
disk_io: (3,0):(25524,19303,465378,6221,165216) (11,0):(18,18,72,0,0)
ctxt 2121146
btime 1076535165
processes 2475

FIGURE 2: /PROC/STAT

SYSSTAT PROJECT

Thankfully, there is a project in Linux to
mine the raw data out of the /proc filesystem
and make it available for display as well as for
building a historical database. The sysstat
project is led by Sébastien Godard from
France: Web links to project information are:

http://freshmeat.net/projects/sysstat/
http://perso.wanadoo.fr/sebastien.godard/
The project includes:

� iostat: Monitor system input and output
device loading by comparing the time
the devices are active in relation to their
average transfer rates.

� mpstat: Monitors CPU activity,
aggregate and individual CPU

� sar: Collect, save and report system
activity metrics

IOSTAT

Iostat generates two reports, first CPU
activity, followed by device utilization. See
FIGURE 5.

Again notice the percentages of the four
CPU states. The device section shows trans-
fers per second (tps) by device, blocks read or
written per second as well as the count of
blocks read and written. The –d n c option will
cause iostat to display a new report every n
seconds for a count of c times.

MPSTAT

Mpstat displays processor utilization, per-
centage of time for each CPU state and the
number of interrupts per second. See FIGURE 6.

If you want, the –V n c option may specify
both an interval and a count to cause mpstat to
redisplay every n seconds for a count of c times.

SAR

Sar provides three major functions:

� Create daily performance files with all
system metrics

� Display metrics from a current or
previous day’s file

� Extract data from saved performance
files in a format to be loaded into
spreadsheets or databases.

File creation is based on the –o option. The
data is saved in binary format in files named,
by default: /var/log/sa/sadd. See FIGURE 7.

Network Support • March/April 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

cpu 3357 0 4313 1362393
The number of jiffies (1/100ths of a second) that the system spent in user mode, user mode with low priority
(nice), system mode, and the idle task, respectively. The last value should be 100 times the second entry in the
uptime pseudo-file.

page 5741 1808
The number of pages the system paged in and the number that were paged out (from disk).

swap 1 0
The number of swap pages that have been brought in and out.

intr 1462898
The number of interrupts received from the system boot.
disk_io: (2,0):(31,30,5764,1,2) (3,0):...
(major,minor):(noinfo, read_io_ops, blks_read, write_io_ops, blks_written)

ctxt 115315
The number of context switches that the system underwent.

btime 769041601
boot time, in seconds since the epoch (January 1, 1970).

processes 86031
Number of forks since boot.

FIGURE 3: /PROC/STAT

[root@localhost 2]# cat /proc/2/status
Name: keventd
State: S (sleeping)
Tgid: 2
Pid: 2
PPid: 1
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups:
SigPnd: 0000000000000000
SigBlk: fffffffffffeffff
SigIgn: 0000000000010000
SigCgt: 0000000000000000
CapInh: 0000000000000000
CapPrm: 00000000ffffffff
CapEff: 00000000fffffeff

FIGURE 4: RUNNING PROCESS

Linux 2.4.18-3 (dhcp64-134-114-41.hhwh.hou.wayport.net)
02/23/2004

avg-cpu: %user %nice %sys %idle
10.26 0.00 2.82 86.91

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
dev3-0 22.84 420.82 93.67 312066 69464
dev11-0 0.02 0.10 0.00 72 0

FIGURE 5: IOSTST REPOA

Linux 2.4.18-3 (localhost.localdomain) 02/24/2004

10:51:55 AM CPU %user %nice %system %idle intr/s
10:51:55 AM all 2.26 0.01 0.58 97.15 154.79

FIGURE 6: MPSTAT REPOA

Notice the default naming convention will
keep only a month of data in the binary files.
You may override this with the –o option, or
extract the data into another format with
these parameters:

� -e hh:mm:ss Set the ending time of the
report

� -f filename Extract records from
filename

� -h When reading data from a file, print
its contents in a format that can easily
be handled by pattern processing
commands like awk

� -H When reading data from a file, print
its contents in a format that can easily be
ingested by a relational database system

� -i interval Select data records at seconds
as close as possible to the number
specified by the interval parameter

� -s hh:mm:ss Set the starting time of the
data

� -t When reading data from a daily data
file, indicate that sar should display the
timestamps in the original locale time of
the data file creator

And what kind of data can be extracted?
These parameters show what is saved in the
binary files:

� -b Report I/O and transfer rate
statistics

� -B Report paging statistics
� -c Report process creation activity
� -d Report activity for each block

device (kernels 2.4 and later only)
� -I irq | SUM | PROC | ALL | XALL

Report statistics for a given interrupt:

� -n DEV | EDEV | SOCK | FULL
Report network statistics

� -q Report queue length and load
averages

� -r Report memory and swap space
utilization statistics

� -R Report memory statistics
� -u Report CPU utilization

A few examples of what this looks like: you
can see CPU activity starting at 10:00 am. See
FIGURE 8.

Or perhaps you would like to see swap data
from February 24th, ending at 9:30 am. See
FIGURE 9.

Hmmm, this is starting to remind me of
SMF data from those old extinct IBM main-

frames. (Remember them?) The system can
write performance metrics to an internal file
using a specified interval. You can extract
the records you want and load them to a

database or even a spreadsheet. See FIGURE

10 for what the extract output would look
like if you chose the –H option for a rela-
tional database.

www.naspa.com • March/April 2005 • Network Support©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

[root@localhost sa]# pwd
/var/log/sa

[root@localhost sa]# ls -al
total 88
drwxr-xr-x 2 root root 4096 Feb 25 10:40 .
drwxr-xr-x 9 root root 4096 Feb 25 10:56 ..
-rw-r--r-- 1 root root 21701 Feb 23 21:20 sa23
-rw-r--r-- 1 root root 42197 Feb 24 15:20 sa24
-rw-r--r-- 1 root root 9989 Feb 25 12:10 sa25

FIGURE 7: BINARY FILE NAMES

[rda@localhost rda]$ sar -s 10:00:00
Linux 2.4.18-3 (localhost.localdomain) 02/24/2004

10:00:00 AM CPU %user %nice %system %idle
10:10:00 AM all 1.11 0.00 0.38 98.51
10:20:00 AM all 4.18 0.00 0.85 94.97
10:30:00 AM all 1.39 0.03 0.37 98.21
10:40:00 AM all 1.61 0.00 0.44 97.95
10:50:00 AM all 2.14 0.00 0.44 97.43
11:00:00 AM all 1.87 0.00 0.45 97.68
11:10:00 AM all 3.52 0.00 0.40 96.09
11:20:00 AM all 2.77 0.00 0.42 96.80
11:30:00 AM all 0.58 0.00 0.36 99.05
11:40:00 AM all 3.99 0.00 0.62 95.39
11:50:00 AM all 4.00 0.00 1.13 94.86
12:00:00 PM all 5.05 0.00 0.52 94.43
12:10:00 PM all 5.64 0.00 0.43 93.94

Average: all 2.91 0.00 0.52 96.56

FIGURE 8: CPU ACTIVITY

[root@localhost init.d]# sar -B -f /var/log/sa/sa24 -e 09:30:00
Linux 2.4.18-3 (localhost.localdomain) 02/24/2004

08:20:00 AM pgpgin/s pgpgout/s activepg inadtypg inaclnpg inatarpg
08:30:00 AM 0.57 7.60 52313 698 10596 12721
08:40:00 AM 2.48 28.25 58419 976 10717 14022
08:50:00 AM 4.34 9.55 61104 993 10602 14539
09:00:00 AM 35.70 5.78 71026 1005 10616 16529
09:10:00 AM 114.21 21.06 95643 2583 10627 21770
09:20:00 AM 2.09 6.03 95654 2584 10627 21773
09:30:00 AM 2.39 4.63 96261 2584 10774 21923
Average: 26.57 13.04 75774 1632 10651 17611

FIGURE 9: SWAP DATA

[root@localhost init.d]# sar -B -f /var/log/sa/sa24 -H

localhost.localdomain;600;2004-02-24 14:30:00 UTC;0.57;7.60;52313;698;10596;12721
localhost.localdomain;599;2004-02-24 14:40:00 UTC;2.48;28.25;58419;976;10717;14022
localhost.localdomain;600;2004-02-24 14:50:00 UTC;4.34;9.55;61104;993;10602;14539
localhost.localdomain;600;2004-02-24 15:00:00 UTC;35.70;5.78;71026;1005;10616;16529
localhost.localdomain;600;2004-02-24 15:10:00 UTC;114.21;21.06;95643;2583;10627;21770
localhost.localdomain;600;2004-02-24 15:20:00
localhost.localdomain;600;2004-02-24 18:10:00 UTC;0.05;4.58;82698;4861;11113;19734
localhost.localdomain;600;2004-02-24 18:20:00 UTC;0.13;5.04;83208;4862;11086;19831
localhost.localdomain;600;2004-02-24 18:30:00 UTC;0.11;8.31;80067;4812;11224;19220

FIGURE 10: EXTRACT OUTPUT

If you save this as a text file, both Excel and Open Office will allow
you to specify a semicolon as a field delimiter. See FIGURE 11.

Once you load your data to a spreadsheet or a database, you can gen-
erate performance reports and graphs. See FIGURE 12.

Now you have a tool to track Linux system performance over time
and can make capacity planning predictions.

As Linux has become more stable and feature-rich, more and more
shops are using it. Whether a company is embracing Linux because its
a smaller company or a not-for-profit organization, or leveraging Linux
with its server farms, or on the growing IBM zSeries platform, the met-
rics and tools mentioned in this article will help IT gain more out of
what they have and how they use it. From there, IT is ready to begin
aligning how they operate their Linux-based systems with the business
objectives of their company.

NaSPA member Robert Andresen is a Principal Software Consultant with
BMC Software in Chicago. He has been with BMC Software for five years,
coming to BMC Software as part of their acquisition of Boole and Babbage.
Andresen has been working with Linux since 1995 and is a co-author of
the IBM Redbook: Linux on IBM @server zSeries and S/390: System
Management. He holds a degree in Mathematics from the Illinois Institute
of Technology.

At BMC Software he is focused on the MAINVIEW series of zSeries solution
as well as PATROL solutions for Windows, Unix and MQSeries, providing
installation and implementation services. His areas of expertise include z/OS,
CICS, DB2, MQSeries, Networking and Unix.

Network Support • March/April 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

FIGURE 11: SELECT SEMICOLON AS FIELD DELIMITER

FIGURE 12: PERFORMANCE GRAPHS

