
www.naspa.com • May/June 2005 • Network Support

Preventing SQL Injections
By  A d am  Ko l awa

WHEN
SQL statements are dynam-
ically created as software

executes, there is an opportunity for a security
breach: if the attacker is able to pass fixed
inputs into the SQL statement, then these
inputs can become part of the SQL statement.
If the attacker knows his SQL, he can use this
technique to gain access to privileged data,
login to password-protected areas without a
proper login, remove database tables, add new
entries to the database, or even login to an
application with admin privileges.

SQL INJECTION EXAMPLES

The example in FIGURE 1 shows a system
that was designed to restrict site access to only
registered users. Unfortunately, an attacker
can use SQL injection to do much more.

The database table that stores user accounts
is shown in FIGURE 2.

n e t wo r k  s u p p o r t   > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Http login form:

<FORM name=login action=login.jsp METHOD=post>
User name: <input name="USER">
<br>                
Password: <input type="password" name="PASSWORD">              
<br>
<input type="submit" value="Go">
</FORM>

login.jsp:

<%@ page import="java.sql.*" %>
<%@ page import="java.io.*" %>

<%
//MySQL
String DRIVER = "org.gjt.mm.mysql.Driver";
String DBURL = "jdbc:mysql://localhost:3306/fruits";
String LOGIN = "fruits";
String PASSWORD = "fruits";

Class.forName(DRIVER);
Connection connection = DriverManager.getConnection(DBURL, LOGIN, PASSWORD);

String sUsername = request.getParameter("USER");
String sPassword = request.getParameter("PASSWORD");
int iUserID = -1;
String sLoggedUser = "";

String s = "SELECT User_id, Username FROM USERS WHERE Username = '" + 
sUsername + "' AND Password = '" + sPassword + "'";

Statement selectStatement = connection.createStatement ();
ResultSet resultSet = selectStatement.executeQuery(s);
if (resultSet.next()) {

iUserID = resultSet.getInt(1);
sLoggedUser = resultSet.getString(2);

}

PrintWriter writer = response.getWriter ();
if (iUserID >= 0) {

writer.println ("User logged in: " + sLoggedUser);
} else {

writer.println ("Access Denied!");
}

%>

FIGURE 1: SAMPLE SYSTEM

When SQL statements
are dynamically created

as software executes,
there is an opportunity
for a security breach...



The intended usage is that when a user provides the inputs user=john
and password=doe, the string select User_id, Username from users
where Username='john' and Pass-word='doe'  is formed and the user
will be logged in as John.

However, there are many ways that an attacker can use SQL injection
to perform actions that the developer did not anticipate.

LOGGING IN WITHOUT A VALID USERNAME
AND PASSWORD

First, imagine that the attacker submits the following inputs:

user = ' or 1=1 #

password = (ANY)

The resulting SQL statement would be select User_id, Username
from users where Username='' or 1=1 #' and Password='(ANY)'. As a
result, the attacker can log in as John without providing a valid user-
name or password.

Note that we are using '#' because this example connects to a
MySQL database, which takes '#' as a comment. For other databases,
other comment delimiters may apply (for example, '--').

LOGGING IN AS THE ADMINISTRATOR

The information exposed by error messages can be very useful to an
attacker. Imagine that the attacker submits the following inputs:

user = ' error!

password = (ANY)

The resulting SQL statement would be select User_id, Username
from users where User-name='' error! ' and Password='(ANY)'. As a
result, the attacker receives a valuable error message shown in
FIGURE 3.

Now, the attacker knows that the column names are based on their
functions (for example, that a column with passwords is named “pass-
word”), so he can make educated guesses about the column names. For
instance, he might try to submit the inputs in FIGURE 4.

As a result, he will receive another error message as shown in
FIGURE 5.

This response tells the attacker that Username was a good guess. He
then submits another set of inputs:

user = ' or Username like 'a%' #

password = (ANY)

The resulting SQL statement would be select User_id, Username
from users where Username='' or Username like 'a%' # ' and
Password='(ANY)'. As a result, the attacker would be logged in as
admin, and gain all associated privileges.

DELETING TABLES

Even without logging in as admin, the attacker can remove database
tables. Assume that the attacker provides the inputs shown in FIGURE 6.

The resulting SQL statement would be  select User_id, Username
from users where Username='' or 1=1; drop table users; # ' and

Password='(ANY)'. As a result, the attacker would be logged in as
John, and the users table would be deleted if the database engine and
driver allow multiple SQL statements to be passed as one. Fortunately,
most JDBC drivers do not.

SQL INJECTION PREVENTION

The traditional attempt to avoid this problem is to validate all user
inputs. This is generally an effective way of dealing with malicious
user input. However, it's possible to prevent these attacks altogether
by building the statements in such a way that it is impossible for
attackers to hijack them—even with the most well-designed and
malicious inputs.

A simple way to ward off SQL injection attacks is to ensure that all
SQL statements recognize user inputs as variables, and that statements
are precompiled before the actual inputs are substituted for the vari-
ables. Typically, this is implemented as a two-stage process. In the first
stage, the SQL statement should be built and parsed with variables in
place of the expected user inputs. Then, in the second stage—before the
statement is passed to the database—the variables should be replaced
with the user inputs. When you implement this strategy, you ensure that
user inputs are never parsed as the actual SQL statement, so even mali-
cious user inputs are rendered ineffective.

For instance, in Java, a secure way to build SQL statements is to con-
struct all queries with PreparedStatement instead of Statement and/or
to use parameterized stored procedures. Parameterized stored proce-
dures are compiled before user input is added, making it impossible for

Network Support • May/June 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

+---------+--------------+----------+
| User_id | Username    | Password |
+---------+--------------+----------+
|       1 | john       | doe     |
|       2 | jan's friend | friend  |
|       3 | admin       | qaz456  |
+---------+--------------+----------+

FIGURE 2: DATABASE TABLE

java.sql.SQLException: Syntax error or access violation:
You have an error in your SQL syntax near 'error! ' AND
Password = ''' at line 1

FIGURE 3: ERROR MESSAGE

user = ' or Username like '%' or User_name like '%' # 
password = (ANY)

FIGURE 4: SAMPLE INPUTS

java.sql.SQLException: Column not found: Unknown column
'User_name' in 'where clause'

FIGURE 5: ERROR MESSAGE

user = ' or 1=1; drop table users; #
password = (ANY)

FIGURE 6: SAMPLE INPUTS



www.naspa.com • May/June 2005 • Network Support©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

an attacker to modify the actual SQL state-
ment. When PreparedStatement is used, most
JDBC drivers will prepare a statement with the
server, and then supply the parameters sepa-
rately. In either case, after the initial parsing,
there is a clear distinction between the SQL
statement and the variable. The variables are
encapsulated and special characters within
them are automatically escaped in a manner
suited to the target database. Consequently, it
is impossible for an attacker to pass malicious
input and have it treated as if it were the actual
SQL statement—treatment that is required if
the attacker is going to succeed with SQL
injection attacks.

Even if you use PreparedStatement, you
still need to pay attention to the way in which
you build arguments. All parameters should be
inserted through appropriate JDBC calls. If
you concatenate the SQL sentence and omit
the JDBC calls, then an attempted SQL injec-
tion could be parsed as SQL, and the attacker
could succeed.

For example, the code in FIGURE 7 illus-
trates both the correct and incorrect ways of
using PreparedStatement.

How do you ensure that code follows these
best practices? Most SQL statements are cre-
ated dynamically; consequently, you need to
execute the application paths that create, col-
lect and examine the SQL statements, and ver-
ify whether they are being constructed in a
secure manner (i.e., that the statements are
precompiled with variables before user input
is added). In addition, you need to inspect the
database-related code to verify that secure
coding practices are being followed (for
instance, the Java best practices of using
PreparedStatement instead of Statement, and
for using PreparedStatement correctly).

Both of these types of verification can be
automated. For instance, in Java, available
technologies can statically analyze the code
that is responsible for forming the SQL state-
ments. This static analysis can be used to ver-

ify that if you build SQL for JDBC, you
always use PreparedStatement. It can also ver-
ify whether all available PreparedStatements it
includes are built properly (with all param-
eters inserted through appropriate JDBC calls,
rather than string concatenation).

Moreover, to determine whether SQL state-
ments are being built in the recommended
two-step process, available monitoring tech-
nologies can use dynamic analysis to watch
database calls as the application is being tested
during the integration phase. As the applica-

package fruits;

import java.sql.*;

public class CustomerDatabaseJDBC extends CustomerDatabase
{

public int getUserId(String user, String password)
{

ConnectionManager manager = ConnectionManager.getInstance ();
Connection connection = manager.getConnection ();

PreparedStatement selectStatement = null;
ResultSet resultSet = null;

int id = -1;
try {

/* Correct use of prepared statement. Both parameters are inserted
through appropriate JDBC calls

selectStatement = connection.prepareStatement(
"SELECT User_id FROM USERS WHERE Username = ? AND Password = ?");

selectStatement.setString (1, user);
selectStatement.setString (2, password);
*/

/* Incorrect use of prepared statement. Developer is concatenating
SQL sentence and omits JDBC calls */

selectStatement = connection.prepareStatement(
"SELECT User_id FROM USERS WHERE Username = '" +
user +
"' AND Password = '" +
password + "'");

/* Still incorrect use of prepared statement.
All parameters should be passed through JDBC calls

selectStatement = connection.prepareStatement(
"SELECT User_id FROM USERS WHERE Username = '" +

user + "' AND Password = ?");

selectStatement.setString (1, password);
*/

resultSet = selectStatement.executeQuery();

if (resultSet.next()) {
id = resultSet.getInt(1);

}
} catch (SQLException exception) {

System.err.println ("Error looking for user: " +
exception.getMessage ());

} finally {
if (resultSet != null) {

try {resultSet.close();} catch (SQLException ex) {}
}
if (selectStatement != null) {

try {selectStatement.close();} catch (SQLException ex) {}
}
manager.reclaimConnection (connection);

}

return id;
}

}

FIGURE 7: PREPARED STATEMENT

Even if you use
PreparedStatement,

you still need to
pay attention to the

way in which you build
arguments.



Network Support • May/June 2005 • www.naspa.com ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

tion is stimulated through a functional test
suite that is run through a test client, the mon-
itoring technologies watch the test suite cover-
age to see which application paths are
covered, and trap all SQL statements that pass
through the proxy. The database monitoring
technologies can then analyze how the SQL
statements were dynamically constructed, and
identify any statements that were built in an
unsafe way. In this way, you can identify secu-
rity vulnerabilities and correct them before
attackers have the opportunity to exploit your
application. This analysis process is illus-
trated in FIGURE 8.

While the previous examples refer to Java
and JDBC, the same principles can be applied
to code built in C++, ASP, Visual Basic, etc.
For instance, with C++, you would perform
runtime instrumentation to enable the integra-
tion testing monitoring, and you would again
supplement this dynamic analysis with a static
analysis of database-related code. In all cases,
the key to security is to ensure that the user
input is not recognized and parsed as part of
the SQL statement.  

NaSPA member Dr. Adam Kolawa is the co-founder
and CEO of Parasoft, a leading, provider of
Automated Error Prevention (AEP) software solutions.

Database
Regression test suite

exercises the application
from the front end

Regression
Test Suite

Inputs

Application
Front End

ProxyMiddleware

Regression
Test Suite
Outputs

Database calls are sniffed,
then analyzed

FIGURE 8: ANALYSIS PROCESS


