
Network Support • July/August 2005 • www.naspa.com

Web Application and
Web Service Security:

Avoiding Internal
Application Vulnerabilities

By A d am Ko l awa

WHEN
most people in the software industry refer to
"security," they mean the security of the network,

operating system, and server. Organizations that want to protect their
systems against security attacks invest a lot of time, effort, and money
ensuring that these three components are secure. Without this secure
foundation, the system cannot operate securely.

However, even if the network, server, and operating system are
100% secure, vulnerabilities in the application itself can make a sys-
tem just as prone to dangerous attacks as unprotected networks, oper-
ating systems, and servers would. In fact, if an application has security
vulnerabilities, it can allow an attacker to access privileged data, delete
critical data, and even break into the system and operate at the same
priority level as the application, which is essentially giving the attacker
the power to destroy the entire system. Consequently, the security of
the application is even more important than the security of the system
on which it is running. Building an insecure application on top of a
secure network, OS, and server is akin to building an elaborate fortress,
but leaving the main entryway wide open and unguarded.

A multi-tier strategy can help identify, correct, and prevent security
vulnerabilities that stem from the application.

� At Tier 1, analyze the source code in the source code repository
and use static analysis and unit testing to expose coding issues
that make the application vulnerable to security attacks.

� At Tier 2, exercise the deployed Web application or Web service
to determine whether test inputs can result in security breaches
and—for Web applications only—whether the Web site pages
are constructed in a way that makes the application vulnerable to
security attacks. This level of analysis—with limited visibility
into the application's construction—is essentially black-box
security testing.

� At Tier 3, perform runtime error detection on a deployed Web
application or Web service to expose potentials for SQL
injection, tainted input reaching vulnerable functions, buffer

overflows, and denial of service attacks. This level of analysis—
with full visibility into the application's construction—could be
considered white-box security testing.

This multi-tiered strategy is used because each approach informs the
other. That is, many problems can be discovered with one technique
and explored further with another. With a single-tiered code scanning
solution, it is not possible to automatically validate findings.

TIER 1: SOURCE CODE ANALYSIS

At Tier 1, source code is scanned to expose coding issues that make the
application vulnerable to security attacks. The analysis includes two steps.
The first step is static analysis, which verifies whether code complies with
a set of security rules that identify positive or possible security vulnerabil-
ities. The second step is unit testing, which involves testing software code
starting with its smallest functional point, which is typically a single class
or method. Unit testing can be extended to span through units and sub-
modules, on to modules and applications. If each individual unit is thor-
oughly tested in isolation, then with other units as part of a sub-module,
module, or application, most of the errors that might otherwise surface
over the software’s lifecycle will be detected or prevented. The objective
of unit testing should be to verify the code’s functionality and construc-
tion/robustness (e.g., the code’s ability to handle unexpected or exceptional
situations). This becomes increasingly important with new technologies
such as Web services, where internal system interfaces are exposed to the
outside world. If code in these systems is not tested appropriately, unpre-
dictable behavior can not only lead to functionality and performance prob-
lems, but also provide hackers a way to enter and manipulate the system.

Static analysis exposes different types of security problems than unit
testing. Essentially, there are two levels of static analysis:

� Scanning for legitimate mistakes that can lead to buffer
overflows, SQL injection, and other security breaches.

n e t wo r k s u p p o r t > a r t i c l e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

� Scanning for malicious code which is purposely added to create
a backdoor entry—for instance, by calling a random number
generator in a strange way, having every n transactions behave
differently, or allowing dynamic linking of other libraries that
can overload classes.

Although many security issues can be positively identified through
automated testing, manual inspection is required to evaluate some
potential security issues. For example, backdoor entries often look like
valid application code, and valid application code may sometimes
resemble backdoor entries; tools cannot make the subjective analysis
required to determine whether suspicious-looking code is actually a
backdoor entry. However, tools can pinpoint the suspicious areas of
code that require human inspection, making the evaluation process as
rapid and accurate as possible. Automating the code inspection process
typically reduces the time required for code reviews by a factor of ten.

Tier 1 analysis can and should be performed as soon as a developer
completes a piece of code. To ensure that code modifications do not
introduce security problems, Tier 1 tests should be added to the team's
regression test suite and be executed as part of the team's nightly build
and testing process.

TIER 2: DEPLOYED WEB APPLICATION AND
WEB SERVICE APPLICATION RUNTIME
ANALYSIS

Although static analysis is an essential tool for verifying security, it
cannot detect all problems. For instance, only some memory corruption
problems can be discovered statically; most cannot be found unless the
integrated operational application is exercised dynamically.

Tier 2 runtime analysis involves dynamically exercising and scan-
ning the deployed application, which can be located on a staging
server or the production server, from the client side. The general
analysis procedure is this: for any data that an attacker can modify
(including user input, referrer ID's, cookies, and hidden fields), a set
of malicious attack-like inputs designed to expose potential security
vulnerabilities is submitted. These inputs can be generated auto-
matically, then the application's response can be checked by parsing
the HTML or XML code and HTTP response returned after that
submission and verify whether it matches a pattern that indicates
potential security problems.

This general strategy can be applied to any deployed and integrated
Web application or Web service application—no matter what language
it is built with, what platform it is sitting on, or what operating system
it is running on. It diminishes the need to develop and execute complete
attack scenarios—a task which requires considerable time and effort—
because it can verify how the application responds to potential attacks
by submitting attack-like inputs and verifying the application's
response. This analysis cannot begin until after integration has started
and the application can be exercised by an actual or test client. As a
result, it is typically performed by the QA team. However, a fully-
deployed application is not required. For tips on deploying and testing
Web applications piece by piece—a process Parasoft calls "Web-Box
Testing"—see Bulletproofing Web Applications by Kolawa, Hicken,
and Dunlop (John Wiley and Sons, 2001). Regardless of how early Tier
2 analysis is started, the related tests should be added to the team's
regression test suite and executed nightly to ensure that code modifica-
tions do not introduce Tier 2 security errors.

The specific analysis procedure varies for Web applications and Web
services. The following sections will discuss the details of each application.

WEB APPLICATIONS

Web application runtime analysis is a two-step process. First, each
Web page is scanned to determine whether it is constructed in a way
that makes the application vulnerable to attacks. For example, this tech-
nique can be used to identify whether the page is vulnerable to attacks
launched via:

� Malicious code (through source such as query strings, URLs
and pieces of ULs, posted data, cookies, and persistent data
supplied by users then retrieved at a later date [for instance,
from a database]).

� Elements of Web integration (for instance, attacks via Flash or
embedded files or objects).

It is also helpful to verify whether code follows appropriate secu-
rity best practices that protect the application against HTTP-based
attacks. For instance, the following best practice rules can be checked
via static analysis:

� All comments and parts of the HTML that are commented out
should be stripped out from Web pages.

� Ensure that page information is not cached locally on shared
hosts/proxy servers, the meta "no-cache" lines should be inserted
in the HTML HEAD of pages.

The following best practice rules can be checked via dynamic analysis:

� When client input is required from web-based forms, avoid using
the "GET" method to submit data; GET methods should not be
used because they leave a telltale signature in proxy caches.

� Limit application responses and limit server responses.
� Encode HTML-entity encode output that is generated from user

modifiable data to avoid cross-site scripting and similar attack.
� Validate input parameters and accept only a specific set of

characters.
� Filter output based upon input parameters for special characters.
� Secure authentication procedures.
� All data should be re-validated and sanitized at the receiving

server to ensure the data is correct and has not been
tampered with.

� When data is submitted to a server, always limit the type of
acceptable data as much as possible by using strict validation
rules. Programmatically, always ensure that the default data
processing rule is "fail" - only accept the data if it is of the
correct type, falls within the specified bounds (minimum and
maximum lengths) and contains expected content.

� Any security checks should be completed after the data has been
decoded to its simplest form (through canonicalization) and
validated as acceptable content (e.g. maximum and minimum
lengths, correct data type, does not contain any encoded data,
textual data only contains the characters a-z and A-Z etc.).

The second phase of Tier 2, which could be called automated pen-
etration testing, is where it is possible for black-box testing to

www.naspa.com • July/August 2005 • Network Support

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

uncover problems such as SQL Injection, Blind SQL Injection, XSS,
Command Injection, LDAP Injection, XPath Injection, Access
Control, Session Management, and so on. This phase involves
checking how the application responds to attack-like inputs. All
opportunities for an attacker to modify data (including user input,
referrer ID's, cookies, and hidden fields) are identified and "safe"
values for each instance of user-modifiable data are determined.
Next, for each data modification opportunity found, a set of mali-
cious inputs are submitted. The application response is verified by
parsing the HTML code and HTTP response returned after each
input submission and verifying whether it matches a pattern that
indicates potential security problems. This pattern can be checked by
running a static analysis rule that cross-references the actual
response with the submitted input. Using this process, it is possible
to expose security vulnerabilities that occur when input is not vali-
dated and the input is output unencoded (for example, cross-site
scripting and code insertion).

WEB SERVICES

The application's response to attack-like inputs is also checked for
Tier 2 analysis of Web services. All input opportunities through
XML variables are identified. Next, for each input opportunity
found, a set of malicious inputs is submitted. The application
response is verified by parsing the XML response returned after each
input submission and verifying whether it matches a pattern that
indicates potential security problems. This pattern is checked by run-
ning a static analysis rule that cross-references the actual response
with the submitted input.

TIER 3: RUNTIME ERROR DETECTION

In Tier 3, the application is exercised from its front end and the fol-
lowing types of analyses are applied:

� SQL injection detection
� Data flow analysis
� Memory corruption and memory leak detection

All three of these analyses cannot be started until the application is
fully integrated and development has passed the application on to QA.
Consequently, these analyses are typically performed by the QA team.
As with all other tiers of analysis, these tests should be added to the
team's regression test suite and continued throughout the remainder of
the project's lifecycle.

For SQL injection detection, the application is exercised through
its front end and an SQL proxy sits between the middleware and the
back end. During this process, the messages passing through the
application are monitored at the proxy level. For instance, SQL
injections can be discovered by exercising the application with spe-
cific scenarios while the proxy monitors SQL statements and identi-
fies suspicious ones.

Data flow analysis is designed to identify when tainted inputs are
passed to vulnerable functions. First, functions are divided into
three groups:

� Functions that can bring tainted inputs
� Functions that are used to clean tainted inputs

� Functions that are vulnerable to tainted inputs

Next, the data returned from tainted input calls is traced until either
1) it is passed through a security policy function that can clean it, or 2)
it is passed to a function that is vulnerable to tainted inputs. If #1
occurs, the tracing stops. If #2 occurs, an error is reported.

If an application is built with C/C++, memory corruption and mem-
ory leak detection should also be performed during Tier 3. Memory
corruption (especially memory corruption on the stack) indicates a
potential for buffer overflows, which could allow serious security
attacks, and memory leaks make the application more vulnerable to
denial of service attacks.

FINAL THOUGHTS

There are several ways to address application security; some are
more effective than others. In general, there are no silver bullets or easy
answers to the multitude of security problems found in custom appli-
cations. Instead, it is important to understand the security issues before,
during, and after development, so that failures can be identified imme-
diately and remediated quickly.

NaSPA member Dr.Adam Kolawa is co-founder and CEO of Parasoft, a lead-
ing provider of Automated Error Prevention (EAP) software solutions.

Network Support • July/August 2005 • www.naspa.com

