
JavaScript
is Not Just For

Web Pages

JavaScript
is Not Just For

Web Pages

INTRODUCTION

There is nothing like a good scripting language that is when it comes to
a clean, easy-to-use, high-level toolkit for both the programmer and the
non-programmer alike. Generally, scripting languages are easier and faster
to code in than the more structured and compiled languages such as C++
and Java, yet they still lend themselves to a wide range of applications.

JavaScript is Netscape’s scripting language that is often used in web-
based development. It was originally designed to add interactivity to
HTML pages you see via your web browser. Similar to IBM’s REXX
and other scripting languages, it provides support for variables, lan-
guage constructs, such as “if” statements, “for” and “while” loops, and
many other scripting elements. In 1997, the ECMA international stan-
dards body standardized the core portion of the language. The result
was a language, technically called ECMAScript, that looks and feels
like JavaScript without the browser-specific parts.

Rhino is an open-source implementation of JavaScript that is typi-
cally embedded into Java applications. Rhino is one component of the
Mozilla project. Developers of Java-based applications, such as job
scheduling systems and identity management systems, are now embed-
ding Rhino JavaScript to offer scripting capabilities to their users.

Adding scripting to an application brings a number of advantages.
The functionality of an application is easily extended using a common

and powerful tool. Scripting languages provide a natural and concise
method of specifying behavior since they are programming languages,
after all. Since scripts are text, they can be easily incorporated into
XML documents.

So while you may not be a web developer, the chances of encoun-
tering JavaScript as part of your day-to-day job are increasing.
JavaScript is not just for web pages.

This article will help you familiarize yourself with JavaScript. It
introduces some basic concepts, describes how to create and run a sim-
ple JavaScript script, describes some common JavaScript elements, and
provides some scripting examples on how to use these elements. Note
that the term “JavaScript” is used throughout this article to refer to the
JavaScript scripting language in general.

Network Support • September/October 2005 • www.naspa.com

<html>
<script language=”JavaScript”>
// This is my first JavaScript script
MyName =”Bob”;
document.write(“Hello “ + MyName);
</script>
</html>

FIGURE 1: BASIC JAVASCRIPT IN AN HTML DOCUMENT

By B ob P ye t t e

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

JAVA VS. JAVASCRIPT

Many users fear the name “JavaScript”
because they think it is the same as Java.
When you say JavaScript can be used to han-
dle users’ requirements, often the reaction is
“But we’re not programmers.” Java and JavaScript are two completely
different languages. It is like comparing REXX to C++. Java, devel-
oped by Sun Microsystems, is a powerful and very complex program-
ming language. JavaScript, on the other hand, is a powerful scripting
language and can be thought of as a lightweight programming lan-
guage.

JavaScript, unlike Java, is an interpreted language which means it
does not need to be compiled. A JavaScript program, normally referred
to as a JavaScript script, is lines of executable computer code.

CREATING AND RUNNING A SIMPLE SCRIPT

Since you may be writing and running JavaScript scripts from a vari-
ety of your own applications, this first example makes use of a general-
purpose technique.

The simplest way to create and run a simple JavaScript script is to
use a text editor on your PC, such as Notepad, code the script, save it
with a .htm extension (not with a .txt extension), and then double-click
or open the file to run it. Although JavaScript statements are not
HTML, they can be included within an HTML document.

FIGURE 1 shows a simple JavaScript script created using NotePad and
stored as a .htm file.

The actual code for the script is stored between the <script> and
</script> tags. The <script> tag identifies the scripting language as
JavaScript. The <html> and </html> tags indicate this is an HTML
document. The script starts with a comment line indicated by //. In the
script, a variable called MyName is assigned the value "Bob". A
method called document.write outputs the string "Hello” followed by
the value of MyName. When this script opens in your web browser, the
result is the string "Hello Bob".

If you are using JavaScript within your own application, the applica-
tion should generate the tags it needs. Some applications may even
include their own JavaScript editors, allowing you to easily imbed
built-in functions and other language elements, and test and debug your
scripts prior to implementation.

SOME GENERAL NOTES

JavaScript is case-sensitive. You will need to get used to the fact that
NAME, Name, and name are all different. Watch your capitalization
when referring to variables, objects, and functions.

Out of habit, some users will end each JavaScript statement with a
semicolon. In general, semicolons are optional. However, they are
required if you put more than one statement on a single line.

JavaScript ignores spaces. You can add white space (i.e. blank
lines, indents, spaces between operators, etc.) to your script to make
it more readable.

BASIC ELEMENTS OF JAVASCRIPT

This section introduces some basic elements of JavaScript, and
includes some examples of JavaScript code.

COMMENTS

You can add comments to your JavaScript script. A single-line com-
ment starts with // and ends at the end of the line. A comment that spans
multiple lines starts with /* and ends with */. You can include any num-
ber of comment lines between the comment delimeters.

Data Types
The basic JavaScript data types are:

� Numbers, such as 293 or 3.14. JavaScript supports both integers
and floating-point numbers.

� Boolean (or logical) values, which can be either true or false.
� Strings, such as "Hello world".
� null (or empty) value, represented by the keyword null.

JavaScript is a loosely typed language. This means you do not have
to specify the data type of a variable when you define it, and data types
are converted automatically as needed during script execution. For
example, in FIGURE 2, the variable Answer is first assigned the numeric
value of 36. Then an expression concatenates a string with this number.
JavaScript automatically converts the number to a string.

VARIABLES

You can use variables to store and manipulate values in a script. You
give variables names by which you refer to them. Variable names must
begin with a letter or the underscore character. Subsequent characters
can also include the digits 0 – 9. Some examples of valid names are
CaMeL, _total, jan31, and APPLstart.

You can define a variable by simply assigning a value to it or by
using the keyword var. For example, age = 65 and var age = 65; each
assign the number 65 to a variable called age.

There are many functions, or methods, you can use to work with
variables. Some examples will follow later in this article.

LITERALS

You use literals to represent fixed values. JavaScript supports the fol-
lowing types of literals:

� Integers, such as 47 or -852.
� Floating-point literals, such as 1.2345, -5.2E3, or 2E-5.
� Boolean literals, either true or false.
� String literals, such as "coconut", 'One small step for man', or

"123".

To use special characters in strings, such as a quotation mark ("), an
ampersand (&), or a backslash (\), you must "escape" the special charac-
ter by preceding the character with a backslash. For example, to assign
the file path "c:\temp" to a variable called Mydir, use the following:

Mydir="C:\\temp"

www.naspa.com • September/October 2005 • Network Support

Answer = 36;
Fact = “Number of years since man first landed on the moon is “ + Answer;

FIGURE 2: AUTOMATIC CONVERSION OF DATA TYPES

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

EXPRESSIONS

An expression is a combination of literals, variables, and operators
that evaluates to a single value. An arithmetic expression evaluates to a
number; a string expression evaluates to a character string; a logical
expression evaluates to either true or false.

OPERATORS

JavaScript supports many different types of operators that you can use
in your expressions. Some of the more common operators are listed below.

The comparison operators are: == (is equal to), != (is not equal to),
< (less than), <= (less than or equal to), > (greater than), >= (greater
than or equal to).

Remember to use = when assigning a value to a variable (e.g.
MyName = "Bob"), and = = when comparing values (e.g. if MyName
== "Bob" …). Confusing these two is a common mistake in JavaScript
programming.

You can use the following logical operators: || (or), && (and), ! (not)
In addition to the standard arithmetic operators (+, -, *, /), you can

use % for modulus (division remainder), ++ (increment by 1), and --
(decrement by 1). You can also use + as a string operator to concate-
nate strings and variables.

CONDITIONAL STATEMENTS

Very often when you write code, you need to perform different
actions for different decisions. You can use the following conditional
statements in your code to do this.

� If statement – includes a condition and an action to take if the
condition is true.

� If…else statement – identifies the actions to take based on a
condition being true and the condition being false.

If you want to use more than one statement after an if or else state-
ment, you must enclose the statements in curly braces { }.

FIGURE 3 shows an example of conditional statements. If the vari-
able Latejob has a value of "payroll" and the variable Hour is
greater than 10, the Notify variable is assigned the value 'fred-
bloggs@mycompany.com' and the Severity variable is set to 2.
Otherwise, Severity is set to 4.

You can also use a conditional operator to assign a value to a vari-
able based on some condition. Basically, it is a short alternative to cod-
ing a simple if…else statement where a variable is assigned different
values. The syntax is:

variable = (condition) ? (true action) : (false action)

FIGURE 4 shows two approaches for assigning a variable different
values based on a condition. If the remainder when MyNumber is
divided by 2 is equal to 0, then assign the string "Even" to the vari-
able named MyType. Otherwise, assign "Odd" to the variable
named MyType.

JavaScript also supports the switch statement, which allows a script
to evaluate an expression and attempt to match the expression’s value
to a case label. This allows you to combine several tests of the same
variable or expression into a single block of statements.

In FIGURE 5, the expression DayOfWeekNumber is evaluated once.
The value of this variable is compared with the values for each "case" in
the structure. If there is a match then the block of code associated with
that case is executed. Use the "break" statement to prevent the code from
running into the next case automatically. If there is no match to a case,
the "default" code applies. For example, if DayOfWeekNumber = 6,
control passes to "case 6" where the Start_batch variable is set to "2PM"
and the Late_end variable is set to "9AM tomorrow".

LOOPING

To run the same block of code multiple times, you can use looping
statements in your code. In JavaScript, there are the following looping
statements:

� while—loop while a condition is true.
� do while—loop through a block of code once, and then repeat

the loop while a condition is true. The condition is tested at the
end of the loop rather than at the beginning.

� for—loop for a specified number of times. The "for" loop
typically uses a variable (i.e. a counter) to keep track of how
many times the loop has executed, and it stops when the counter
reaches a certain number.

A simple example of a "for" loop is shown in FIGURE 6. The vari-
able pyramid is initialized to 0. In the "for" statement, the initial

Network Support • September/October 2005 • www.naspa.com

if (LateJob == “payroll” && Hour > 10)
{

Notify = ‘fredbloggs@mycompany.com’;
Severity = 2;

}
else

Severity = 3;

FIGURE 3: CONDITIONAL EXPRESSION USING IF …ELSE

//One approach
if (MyNumber%2==0) Mytype = “Even”;
else Mytype = “Odd”

//Another approach
MyType = (MyNumber%2==0) ? “Even” : “Odd”;

FIGURE 4: TWO APPROACHES TO AN IF CONDITION

switch (DayOfWeekNumber)
{
case 0:
Start_batch = “10AM”;
Late_end = “5AM tomorrow”;
break;

case 6:
Start_batch=”2PM”;
Late_end = “9AM tomorrow”;
break;

default:
Start_batch=”4PM”;
Late_end = “6AM tomorrow”;

}

FIGURE 5: COMBINING SEVERAL TESTS WITH SWITCH

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

expression is i=1, the condition is i<10, and the increment is i++ (add
1 to i). A left brace is used to signal the beginning of a block, a right
brace is used at the end of the block. All the statements between the
braces are executed with each iteration of the loop. Each time through
the loop, the value of the counter i increases by 1 and the value of
pyramid increases by the value of i. The loop stops when the condition
i < 10 is false. The result is a display of a series of 9 numbers: 1 3 6
10 and so on, where the difference between two consecutive numbers
increases by 1.

Note that a shortcut you could use for incrementing the value of
pyramid in this example is pyramid+=i, which takes the value of pyra-
mid, adds i to it, and assigns the result back to pyramid.

OBJECTS AND METHODS

Objects allow you to combine several kinds of data (properties) and
functions to act on the data (methods) into a single, convenient pack-
age. Some examples of built-in JavaScript objects are:

� Date object—used to work with dates and times.
� Math object—includes math constants and functions.
� String object—used to work with text.
� Array object—stores a set of values in a single variable name,

where each value is an element of the array with an associated
index number, ranging from 0 to the number of elements - 1. For
example: Month[0], Month[1], …, Month[11].

Each property is basically a variable in itself, and is contained within
the object. Each property can be assigned a value. You can use proper-
ties to store any type of data a variable can store. The general syntax
for using a property is object.property_name. Methods are functions
that are stored as properties of an object. The general syntax for using
a method is object.method_name().

In FIGURE 7, a variable called Animal is assigned the value
"Hippopotamus". Subsequent statements use methods and properties to
work with this variable, as follows:

� HowLong has the value 12 because Animal.length resolves to
the length of the string "Hippopotamus".

� AllCaps has the value "HIPPOPOTAMUS".
Animal.toUpperCase() converts the value of the variable Animal
to all upper-case characters.

� Shortform has the value "Hippo". Animal.substring(0,5) resolves
to a string containing the 1st – 5th characters of the variable
Animal. Note that the first position in a string is position 0.
substring(start,end) starts at position start and includes all
characters up to but not including position end.

SUMMARY

This article introduced the JavaScript scripting language through
descriptions and examples. Although I have only scratched the surface
of this powerful language, you can use many of these basic scripting
elements to create useful scripts.

There are many books and web sites available where you explore the
JavaScript language in more detail. Detailed reference information on the
ECMAScript language specification can be found at http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

JavaScript is a powerful scripting language that is finding its way
into many applications outside of its traditional web-based applica-
tions. JavaScript is not just for web pages anymore.

NaSPA member Bob Pyette is a Product Planner for Toronto-based
Cybermation Inc. and has over 20 years’ experience in the Information
Technology industry.You can reach him at bpyette@cybermation.com.

www.naspa.com • September/October 2005 • Network Support

pyramid = 0;
for (i=1; i<10; i++)
{
pyramid = pyramid + i;
document.write(pyramid,” “);
}

FIGURE 6: LOOPING WITH THE FOR STATEMENT

Animal = “Hippopotamus”;
HowLong = Animal.length;
AllCaps = Animal.toUpperCase();
Shortform = Animal.substring(0,5);

FIGURE 7: USING STRING METHODS AND PROPERTIES

