
Network Support • March 2006

The Technical Support Guide to
Development Best Practices

B y D r . A d a m K o l a w a

TECHNICAL SUPPORT PROFESSIONALS—ESPECIALLY THOSE RESPONSIBLE FOR

software testing—can benefit from understanding both development
and testing best practices. When you understand development best
practices, you can identify when developers are not following the
required practices and notify the person in charge of enforcing devel-
opment best practices (technical support professionals should not be
responsible for this enforcement). When developers follow the appro-
priate best practices, you will waste less time chasing bugs during test-
ing, or, when bugs make it into the release, supporting customers who
are impacted by the bugs. Moreover, technical support professionals
that are tasked with software testing should have an understanding of
testing best practices in order to test the software as thoroughly and
efficiently as possible.

This article introduces the development and testing best practices
that technical support professionals should be aware of.

DEVELOPMENT BEST PRACTICES

Practice #1: Defensive Programming
Defensive programming is the practice of anticipating where failures

can occur and then creating an infrastructure that tests for errors,
reports when anticipated failures occur, and performs specified dam-
age-control actions—such as stopping program execution, redirecting
users to a backup server, enabling debugging information that can be
used to diagnose the problem, and so on. These defensive program-
ming infrastructures are typically built by adding assertions to the
code, implementing Design by Contract, developing software defen-
sive firewalls, or simply adding code that validates user inputs. By
applying defensive programming techniques, developers can detect
problems that might otherwise go unnoticed, prevent minor problems
from growing into disasters, and save themselves a lot of debugging
and maintenance time in the long run.

Hint: If the developers are performing defensive programming, they
will be able to compile the code in two ways—with or without the
defensive programming infrastructure.

Defensive Programming Resources

▼ Hunt, Andrew and David Thomas, The Pragmatic Programmer,
1999.

▼ Eldridge, Geoff. Java and Design by Contract.
www.elj.com/eiffel/feature/dbc/java/ge/.

▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,
Bulletproofing Web Applications. 2001.

▼ Maguire, Steve, Writing Solid Code, 1993.
▼ McConnell, Steve. Code Complete, 1993.
▼ Meyer, Bertrand. Object-Oriented Software Construction, 2000.
▼ Payne, Jeffrey E., Michael A. Schatz, and Matthew N. Schmid.

Implementing Assertions for Java. Dr. Dobb’s Journal (January
1998). www.ddj.com/articles/1998/9801/9801d/9801d.htm.

▼ Plessel, Todd. Design by Contract: A Missing Link in the Quest
for Quality Software. www.elj.com/eiffel/dbc/.

Practice #2: Code Review
A code review is the process where the developers and architects

meet and discuss code. Its purpose is to exchange ideas about how code
is written, and to establish a consistent interpretation of code through-
out the group. During these reviews, developers should be given the
opportunity to explain their code to one another. Often, simply explain-
ing the code helps developers identify problems and envision new solu-
tions for previously troubling dilemmas. When the group members
discuss the code, their discussion should focus on important issues
such as algorithms, object-oriented programming, and class design.

Hint: If developers are not complaining about code reviews, they
probably are not performing them.

Code Review Resources

▼ Hunt, Andrew and David Thomas, The Pragmatic Programmer,
1999.

▼ Kaner, Cem, Testing Computer Software, 1988.
▼ McConnell, Steve. Code Complete, 1993.
▼ Meyers, Glenford J., The Art of Software Testing, 1979.

Practice #3: Coding Standard Compliance
Coding standards are language-specific programming rules that

greatly reduce the probability of introducing errors into applications.
Coding standards originated from the intensive study of industry
experts who analyzed how bugs were generated when code was writ-
ten and correlated these bugs to specific coding practices; they took
these correlations between bugs and coding practices and came up
with a set of rules that prevent coding errors from occurring. In a
team environment or group collaboration, coding standards ensure
uniform coding practices, reducing oversight errors and the time
spent in code reviews. When work is outsourced to a third-party con-
tractor, having a set of coding standards in place ensures that the code
produced by the contractor meets all quality guidelines mandated by
the client company.

n e t wo r k s u p p o r t > a r t i c l e

©2006 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Hint: If there is no system set up to scan code on a regular basis, the
developers probably are not following coding standards.

Coding Standard Resources

▼ Kernighan, Brian and P.J. Plauger. The Elements of
Programming Style, 1988.

▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,
Bulletproofing Web Applications. 2001.

▼ McConnell, Steve. Code Complete, 1993.

Practice #4: Unit Testing
Unit testing involves testing software code starting with its smallest

functional point, which is typically a single class. Each individual class
should be tested in isolation before it is tested with other units or as part
of a module or application. While it begins with testing software at its
smallest functional point—typically a single class—it also spans through
units and sub-modules, on to modules and applications, testing function-
ality of the appropriate pieces at each stage. By testing every unit indi-
vidually, and then together, most of the errors that might be introduced
into the code over the course of a project can be detected or prevented
entirely. The objective of unit testing is to test not only the functionality
of the code, but also to ensure that the code is structurally sound and
robust, and to be able to respond appropriately in all conditions. If code
in these systems is not tested appropriately, its vulnerabilities can be used
to break into the code and lead to a security risk (a memory leak or stolen
pointer, for example) as well as performance issues.

Hint: If the developers do not regularly run a substantial number of
test cases that contain harnesses, stubs, and calls to main(), they are
not performing unit testing.

Unit Testing Resources

▼ Beck, Kent. Extreme Programming Explained: Embrace Change,
1999.

▼ Hunt, Andrew and David Thomas, The Pragmatic Programmer,
1999.

▼ Kaner, Cem, Testing Computer Software, 1988.
▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,

Bulletproofing Web Applications. 2001.
▼ McConnell, Steve. Code Complete, 1993.
▼ Meyers, Glenford J., The Art of Software Testing, 1979.

Practice #5: Construction Testing (White-Box Testing)
Construction testing, also known as white-box testing, is used to

confirm that software code is structurally sound, and can process a
wide variety of inputs without failure. It is a type of unit testing that
begins with testing software at its smallest functional point—typically
a single class—and spans through units and sub-modules, on to mod-
ules and applications, testing the structure of the appropriate pieces at

each stage. It is much like posing a series of “what if?” questions that
determine whether the application continues to behave appropriately
under unusual or exceptional conditions, and verifies that any inputs
thrown at the code will be received and addressed with the proper
behavioral response. Construction testing ensures that the application is
built correctly and can help prevent problems such as application fail-
ure and security breaches.

Hint: If you see test cases that don’t correlate to specification
entries, the developers are probably performing white-box testing.

Construction Testing Resources

▼ Beizer, Boris, Software Testing Techniques, 1990.
▼ Cole, Oliver. White-Box Testing. Dr. Dobb’s Journal (March

2000).
▼ Kaner, Cem, Testing Computer Software, 1988.
▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,

Bulletproofing Web Applications. 2001.
▼ McConnell, Steve. Code Complete, 1993.
▼ Meyers, Glenford J., The Art of Software Testing, 1979.

Practice #6: Functional Testing (Black-Box Testing)
Functional testing, also known as black-box testing, is used to

verify that software conforms to its specification and that all of the
intended functionality is included and working correctly. It begins
with testing software at its smallest functional point—typically a
single class—and spans through units and sub-modules, on to mod-

ules and applications, testing functionality
of the appropriate pieces at each stage. It is
used to validate that software works cor-
rectly when users perform a series of actions
within the software’s specification. The
intent is to confirm behavior that is expected
from the smallest possible unit of code to
the entire application and ecause it tests

each component in isolation and as part of the system, it allows
developers to frame or isolate the functionality of each piece and
isolate any potential errors that could affect system functionality.

Hint: If you see test cases that correlate to specification entries, the
developers are performing black-box testing.

Functional Testing Resources

▼ Beck, Kent. Extreme Programming Explained: Embrace Change,
1999.

▼ Beizer, Boris, Black-Box Testing: Techniques for Functional
Testing of Software and Systems, 1995.

▼ Beizer, Boris, Software Testing Techniques, 1990.
▼ Kaner, Cem, Testing Computer Software, 1988.
▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,

Bulletproofing Web Applications. 2001.
▼ McConnell, Steve. Code Complete, 1993.
▼ Meyers, Glenford J., The Art of Software Testing, 1979.

Practice #7: Coverage Analysis
Coverage refers to how much of the system the test cases cover.

Coverage is typically measured either as line coverage, branch cover-
age, or path coverage. With line coverage, a line of code is deemed

Network Support • March 2006 ©2006 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Unit testing involves testing software code starting with its
smallest functional point, which is typically a single class.

Each individual class should be tested in isolation before it is
tested with other units or as part of a module or application.

covered if the test case has touched any part of it. For example, if you
have an if condition and one path through it is executed, the affected
lines are deemed covered even when all conditions were not exer-
cised. Branch coverage yields more precise coverage details than line
coverage, but less precise details than path coverage. With branch
coverage, a piece of code is considered 100% covered when each
branch of an if statement has been executed at least once. Path cover-
age accounts for whether the different paths of a statement are exer-
cised. With path coverage, an if statement with multiple branches is
not deemed fully covered unless all of its different possible paths are
executed. Coverage data can be used to monitor how well the current
test suite is covering the code, and to pinpoint which additional code
lines, branches, and paths need to be exercised in order to achieve the
more coverage.

Hint: If the developers’ test reports do not show coverage information,
the developers probably are not measuring the coverage of their tests.

Resources

▼ Kaner, Cem, Testing Computer Software, 1988.
▼ Meyers, Glenford J., The Art of Software

Testing, 1979.

Practice #8: Regression Testing
Regression testing involves testing modified code

under the same set of inputs and test parameters used in previous test
runs to ensure that modifications have successfully eliminated errors
and have not introduced new errors. It is important to use regression
testing as a regular part of any testing process to find new errors during
development (when they are easiest to fix) and before new lines of code
are added that depend on the current code base. Ideally, regression test-
ing is performed nightly (during automated nightly builds) to ensure
that errors are detected and fixed as soon as possible.

Hint: If the developers do not have a system that automatically executes
all available tests every day, they are not performing regression testing.

Resources

▼ Beck, Kent. Extreme Programming Explained: Embrace Change,
1999.

▼ Hunt, Andrew and David Thomas, The Pragmatic Programmer,
1999.

▼ Kaner, Cem, Testing Computer Software, 1988.
▼ Kolawa, Adam, Wendell Hicken, and Cynthia Dunlop,

Bulletproofing Web Applications. 2001.
▼ McConnell, Steve. Code Complete, 1993.

Practice #9: Integration Testing
Integration testing is used to verify that the multiple units of code work

correctly once combined. It is also called interface testing because the
actual test process verifies that the interfaces between the units are com-
patible. It can be used to test at a high level—for example testing complete
transactions in a Web service also tests the integration between individual
components (larger groups of units); or at a more granular level—for
example, one could systematically test a larger number of units by com-
bining two and testing them, adding a third and testing, and so on.

Hint: If the developers do not have complex test cases that verify differ-
ent parts of the system, they probably are not performing integration testing.

Resources

▼ Hunt, Andrew and David Thomas, The Pragmatic Programmer,
1999.

▼ Meyers, Glenford J., The Art of Software Testing, 1979.

TESTING BEST PRACTICES

In addition to checking whether developers follow best practices,
testers can benefit by adopting testing best practices. These practices are
designed to help you verify that the product really works and is solid.

Practice #1: Understand the Product Architecture Before you Start
Testing the Product

If you do not understand the architecture and inner workings of the
product you are testing, you will not be able to anticipate where it is

most error prone. As a result, you could overlook easy opportunities to
uncover a large amount of errors in a small amount of time.

As you gain experience testing over the years, you will learn that
there are some parts of programs that are more error prone than others.
Generally, the most error prone parts of a program are the interfaces
between different modules. Why? Because different groups of devel-
opers work on different modules. These groups often misunderstand
one another’s intentions and assumptions, and errors typically result
when their code interacts. Consequently, a lot of bugs are usually hid-
den in program interfaces.

Another trick is to learn which development groups worked on which
program segments, and use those development groups’ track records to
anticipate which parts of the program are most error prone. For example, if
you know that Group C worked on a certain part of the program and that
Group C usually produces code with a lot of errors, you might want to focus
a large percentage of your testing efforts on the part of the program created
by Group C. Likewise, if you know that Group A almost always delivers
clean, functional code, it is probably safe to spend a smaller percentage of
your time testing the parts of the program that Group A worked on.

Just like a police detective needs to understand the entire situation
before he can solve a murder mystery, you need to understand the entire
situation to solve the mystery of “does this software really work?”

Practice #2: Anticipate Potential Misuses and Verify How the
Software Responds in Those Cases

Don’t think that your job is done once you have verified that the soft-
ware does what it is supposed to do. Users inevitably try to use soft-
ware in unexpected ways—sometimes because they see additional
usages for the product, sometimes because they misunderstand how to
use the product, and sometimes because they want to launch security
attacks through the product.

The specification is the best starting point for testing unexpected
usages. If you don’t have a specification, find one or write one yourself

March 2006 • Network Support©2006 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

In addition to checking whether developers follow best
practices, testers can benefit by adopting testing best

practices. These practices are designed to help you verify
that the product really works and is solid.

if needed. For each feature in the specification, try to imagine what
unexpected paths could be taken by a new user exploring the program,
an experienced user trying to maximize the program, and a hacker try-
ing to manipulate the program. For example, what happens if the user
tries to apply a tool to an unexpected type of source? If the user does
not provide critical information? If the user designs and sends unex-
pected inputs in an attempt to gain access to privileged data or to gain
control of a program?

The appropriate response to these unexpected situations depends on
the program and the situation. In all cases, the response should be intel-
ligent. For example, if the user does not provide critical information, it
is better to have the program display a helpful dialog explaining the
problem than to simply fail to perform the requested action.

Practice #3: Clearly Record the Procedure to Reproduce Each
Error Found

For each problem that you detect, be sure to record detailed, unam-
biguous instructions for reproducing that problem, as well as a detailed
description of the environment and context in which the problem
occurred. If your bug report documentation is incomplete or confusing,
two problems could occur.

One problem is that developers might not be able to reproduce the
error and thus probably will not be able to fix the error. If the developer
does manage to reproduce the error without proper instructions, he or
she will have probably wasted a lot of time in the process.

Another problem is that you will not be able to effectively verify
whether the developer’s modification corrected the problem. If you
don’t test the repair using the exact same environment and procedures
that produced the error in the first place, a passed test will not neces-
sarily mean that the error was corrected.

Practice #4: Help the Team Prevent Errors
Typically, when testers find errors, they add a report to the bug track-

ing system, the responsible developer tries to reproduce and repair the
problem, then the tester must verify that the modification corrected the
reported problem and did not introduce any new problems. This
approach is not only time-consuming and costly, but also inefficient
because it doesn’t help prevent the same types of errors from recurring.
Moreover, it causes the team to waste a significant amount of time, effort,
and resources on the same types of errors thousands of times over.

When your entire team adopts a concept called Automated Error
Prevention, you can ensure that any time an error is discovered, your
process is improved, and that error—along with entire classes of simi-
lar errors—are prevented from recurring.

Parasoft AEP methodology defines the practices that apply the con-
cept of AEP to the software lifecycle, and describes how those prac-
tices can be used in a group environment. The concept of AEP
advocates the automation of five specific procedures, which are com-
bined to improve the development process and prevent software errors:

1. Detect an error
2. Isolate the cause of the error
3. Locate the point in the process that created the error
4. Implement practices to prevent the error from reoccurring
5. Monitor for improvements

The key to AEP is that developers or testers should find each type of
error only once. The knowledge the team gains from finding and ana-

lyzing errors should be used to improve the process so that you never
encounter repeat occurrences of errors similar to those you have
already found.

This process benefits the entire team by improving quality and
reducing costs, but it is especially beneficial to testers because if devel-
opers are performing the required error prevention practices, you won’t
need to repeatedly chase after errors that developers could have easily
found or prevented, and you will have more time to dedicate to higher
level verification tasks, such as anticipating how the software can be
misused and checking how the software performs when it is used unex-
pectedly (see practice #2).

You can further error prevention not only by finding bugs, but also
by helping the team architect, manager, and developers pinpoint the
source of each error you uncover and by suggesting ways to prevent
recurrences of that error.

For example, say that some of your load tests reveal that a heavy load
stops the system. One course of action is to report the problem in the bug
tracking system and hope that someone else figures out why it was caused
and how to prevent it. However, if other team members don’t have the
time or understanding to determine how to prevent the error, you are likely
to encounter similar performance problems in the future. Another course
of action is to work with the team to pinpoint the source of the error and
reach a group consensus on how to prevent the error from recurring.
Typically, when you combine the expertise of a tester, the developer of the
code, and other resourceful team members, you can identify and resolve
the problem source faster and more accurately than any team member
working independently could. After the problem and resolution are iden-
tified, the architect and manager should determine how to implement and
enforce the error prevention measure; this should not be responsibility of
the tester. However, if your testing indicates that a required error preven-
tion measure is not being followed correctly, it’s important to notify the
architect or manager so that he or she can address the problem.

NaSPA member Dr. Adam Kolawa is the co-founder and CEO of Parasoft, a leading provider of

Automated Error Prevention (AEP) software solutions. Kolawa, co-author of Bulletproofing Web

Applications (Hungry Minds 2001), has contributed to and written over 100 commentary pieces

and technical articles for publications such as The Wall Street Journal, CIO, Computerworld, Dr.

Dobb's Journal, and IEEE Computer; he has also authored numerous scientific papers on physics

and parallel processing. His recent media engagements include CNN, CNBC, BBC, and NPR. Kolawa

holds a Ph.D. in theoretical physics from the California Institute of Technology, and has been

granted ten patents for his recent inventions. In 2001, Kolawa was awarded the Los Angeles Ernst

& Young's Entrepreneur of the Year Award in the software category.

Network Support • March 2006 ©2006 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

You can further error prevention not only
by finding bugs, but also by helping the
team architect, manager, and developers

pinpoint the source of each error you
uncover and by suggesting ways to prevent

recurrences of that error.

