
Bash Guide for Beginners

Machtelt Garrels

CoreSequence.com

<tille@coresequence.com>

Version 1.3 Last updated 20040709 Edition

mailto:tille@coresequence.com

Table of Contents
Introduction...1

1. Why this guide?...1
2. Who should read this book?...1
3. New versions and availability..2
4. Revision History..2
5. Contributions...3
6. Feedback..3
7. Copyright information...3
8. What do you need?...4
9. Conventions used in this document...4
10. Organization of this document...4

Chapter 1. Bash and Bash scripts..6
1.1. Common shell programs...6

1.1.1. General shell functions..6
1.1.2. Shell types...6

1.2. Advantages of the Bourne Again SHell..7
1.2.1. Bash is the GNU shell...7
1.2.2. Features only found in bash...7

1.3. Executing commands..12
1.3.1. General..12
1.3.2. Shell built−in commands...13
1.3.3. Executing programs from a script...13

1.4. Building blocks...13
1.4.1. Shell building blocks...14

1.5. Developing good scripts...16
1.5.1. Properties of good scripts..16
1.5.2. Structure..16
1.5.3. Terminology..16
1.5.4. A word on order and logic...17
1.5.5. An example Bash script: mysystem.sh..17
1.5.6. Example init script...19

1.6. Summary...20
1.7. Exercises...20

Chapter 2. Writing and debugging scripts...22
2.1. Creating and running a script..22

2.1.1. Writing and naming...22
2.1.2. script1.sh..22
2.1.3. Executing the script...23

2.2. Script basics..25
2.2.1. Which shell will run the script?...25
2.2.2. Adding comments..25

2.3. Debugging Bash scripts..26
2.3.1. Debugging on the entire script..26
2.3.2. Debugging on part(s) of the script...27

2.4. Summary...29
2.5. Exercises...29

Bash Guide for Beginners

i

Table of Contents
Chapter 3. The Bash environment..30

3.1. Shell initialization files...30
3.1.1. System−wide configuration files...30
3.1.2. Individual user configuration files..32
3.1.3. Changing shell configuration files..34

3.2. Variables...35
3.2.1. Types of variables...35
3.2.2. Creating variables..38
3.2.3. Exporting variables..39
3.2.4. Reserved variables...40
3.2.5. Special parameters...43
3.2.6. Script recycling with variables..44

3.3. Quoting characters..46
3.3.1. Why?...46
3.3.2. Escape characters..46
3.3.3. Single quotes...46
3.3.4. Double quotes..46
3.3.5. ANSI−C quoting...47
3.3.6. Locales...47

3.4. Shell expansion...47
3.4.1. General..47
3.4.2. Brace expansion..48
3.4.3. Tilde expansion...48
3.4.4. Shell parameter and variable expansion..49
3.4.5. Command substitution...50
3.4.6. Arithmetic expansion..50
3.4.7. Process substitution...52
3.4.8. Word splitting..52
3.4.9. File name expansion..52

3.5. Aliases...53
3.5.1. What are aliases?...53
3.5.2. Creating and removing aliases..54

3.6. More Bash options..55
3.6.1. Displaying options...55
3.6.2. Changing options...56

3.7. Summary...57
3.8. Exercises...57

Chapter 4. Regular expressions...58
4.1. Regular expressions..58

4.1.1. What are regular expressions?...58
4.1.2. Regular expression metacharacters...58
4.1.3. Basic versus extended regular expressions...59

4.2. Examples using grep...59
4.2.1. What is grep?...59
4.2.2. Grep and regular expressions..60

4.3. Pattern matching using Bash features...62
4.3.1. Character ranges..62

Bash Guide for Beginners

ii

Table of Contents
Chapter 4. Regular expressions

4.3.2. Character classes...63
4.4. Summary...63
4.5. Exercises...63

Chapter 5. The GNU sed stream editor..65
5.1. Introduction...65

5.1.1. What is sed?...65
5.1.2. sed commands...65

5.2. Interactive editing...66
5.2.1. Printing lines containing a pattern...66
5.2.2. Deleting lines of input containing a pattern..67
5.2.3. Ranges of lines..67
5.2.4. Find and replace with sed..68

5.3. Non−interactive editing..69
5.3.1. Reading sed commands from a file...69
5.3.2. Writing output files...70

5.4. Summary...71
5.5. Exercises...71

Chapter 6. The GNU awk programming language..72
6.1. Getting started with gawk...72

6.1.1. What is gawk?...72
6.1.2. Gawk commands...72

6.2. The print program...73
6.2.1. Printing selected fields..73
6.2.2. Formatting fields...74
6.2.3. The print command and regular expressions...75
6.2.4. Special patterns..75
6.2.5. Gawk scripts..76

6.3. Gawk variables..76
6.3.1. The input field separator..77
6.3.2. The output separators..78
6.3.3. The number of records..78
6.3.4. User defined variables...79
6.3.5. More examples..79
6.3.6. The printf program..80

6.4. Summary...80
6.5. Exercises...80

Chapter 7. Conditional statements..82
7.1. Introduction to if...82

7.1.1. General..82
7.1.2. Simple applications of if..85

7.2. More advanced if usage..87
7.2.1. if/then/else constructs..87
7.2.2. if/then/elif/else constructs..90
7.2.3. Nested if statements...91

Bash Guide for Beginners

iii

Table of Contents
Chapter 7. Conditional statements

7.2.4. Boolean operations..91
7.2.5. Using the exit statement and if..92

7.3. Using case statements...93
7.3.1. Simplified conditions..94
7.3.2. Initscript example..95

7.4. Summary...96
7.5. Exercises...96

Chapter 8. Writing interactive scripts..98
8.1. Displaying user messages...98

8.1.1. Interactive or not?..98
8.1.2. Using the echo built−in command..98

8.2. Catching user input...101
8.2.1. Using the read built−in command...101
8.2.2. Prompting for user input..102
8.2.3. Redirection and file descriptors...103
8.2.4. File input and output..105

8.3. Summary...110
8.4. Exercises...110

Chapter 9. Repetitive tasks..112
9.1. The for loop...112

9.1.1. How does it work?...112
9.1.2. Examples...112

9.2. The while loop..113
9.2.1. What is it?..113
9.2.2. Examples...113

9.3. The until loop..116
9.3.1. What is it?..116
9.3.2. Example...116

9.4. I/0 redirection and loops...117
9.4.1. Input redirection..117
9.4.2. Output redirection..118

9.5. Break and continue...118
9.5.1. The break built−in...118
9.5.2. The continue built−in..120
9.5.3. Examples...120

9.6. Making menus with the select built−in...121
9.6.1. General..121
9.6.2. Submenus..122

9.7. The shift built−in..123
9.7.1. What does it do?..123
9.7.2. Examples...123

9.8. Summary...124
9.9. Exercises...124

Bash Guide for Beginners

iv

Table of Contents
Chapter 10. More on variables..126

10.1. Types of variables...126
10.1.1. General assignment of values..126
10.1.2. Using the declare built−in...126
10.1.3. Constants...127

10.2. Array variables..128
10.2.1. Creating arrays..128
10.2.2. Dereferencing the variables in an array...129
10.2.3. Deleting array variables...129
10.2.4. Examples of arrays..129

10.3. Operations on variables...132
10.3.1. Arithmetic on variables...132
10.3.2. Length of a variable...132
10.3.3. Transformations of variables...132

10.4. Summary...135
10.5. Exercises...135

Chapter 11. Functions..137
11.1. Introduction...137

11.1.1. What are functions?...137
11.1.2. Function syntax...137
11.1.3. Positional parameters in functions..138
11.1.4. Displaying functions..139

11.2. Examples of functions in scripts...139
11.2.1. Recycling...139
11.2.2. Setting the path..140
11.2.3. Remote backups..140

11.3. Summary...142
11.4. Exercises...142

Chapter 12. Catching signals...143
12.1. Signals...143

12.1.1. Introduction...143
12.1.2. Usage of signals with kill..144

12.2. Traps...145
12.2.1. General..145
12.2.2. How Bash interprets traps...146
12.2.3. More examples..146

12.3. Summary...146
12.4. Exercises...147

Appendix A. Shell Features..148
A.1. Common features...148
A.2. Differing features...149

Appendix B. GNU Free Documentation License...152
B.1. Preamble...152
B.2. Applicability and definitions..152

Bash Guide for Beginners

v

Table of Contents
Appendix B. GNU Free Documentation License

B.3. Verbatim copying...153
B.4. Copying in quantity..153
B.5. Modifications...154
B.6. Combining documents...155
B.7. Collections of documents...155
B.8. Aggregation with independent works..156
B.9. Translation..156
B.10. Termination..156
B.11. Future revisions of this license...156
B.12. How to use this License for your documents...157

Glossary...158
A...158
B...158
C...158
D...159
E...160
F...160
G...160
H...161
I..161
J..161
K...162
L...162
M..163
N...163
P...164
Q...164
R...164
S...165
T...165
U...166
V...166
W..167
X...167
Z...168

Index...169
A...169
B...169
C...170
D...170
E...170
F...171
G...172
H...172
I..172

Bash Guide for Beginners

vi

Table of Contents
Index

J..173
K...173
L...173
M..173
N...173
O...174
P...174
Q...174
R...174
S...175
T...176
U...176
V...176
W..177
X...177
Y...177
Z...177

Bash Guide for Beginners

vii

Introduction

1. Why this guide?

The primary reason for writing this document is that a lot of readers feel the existing HOWTO to be too short
and incomplete, while the Bash Scripting guide is too much of a reference work. There is nothing in between
these two extremes. I also wrote this guide on the general principal that not enough free basic courses are
available, though they should be.

This is a practical guide which, while not always being too serious, tries to give real−life instead of theoretical
examples. I partly wrote it because I don't get excited with stripped down and over−simplified examples
written by people who know what they are talking about, showing some really cool Bash feature so much out
of its context that you cannot ever use it in practical circumstances. You can read that sort of stuff after
finishing this book, which contains exercises and examples that will help you survive in the real world.

From my experience as UNIX/Linux user, system administrator and trainer, I know that people can have years
of daily interaction with their systems, without having the slightest knowledge of task automation. Thus they
often think that UNIX is not userfriendly, and even worse, they get the impression that it is slow and
old−fashioned. This problem is another one that can be remedied by this guide.

2. Who should read this book?

Everybody working on a UNIX or UNIX−like system who wants to make life easier on themselves, power
users and sysadmins alike, can benefit from reading this book. Readers who already have a grasp of working
the system using the command line will learn the ins and outs of shell scripting that ease execution of daily
tasks. System administration relies a great deal on shell scripting; common tasks are often automated using
simple scripts. This document is full of examples that will encourage you to write your own and that will
inspire you to improve on existing scripts.

Prerequisites/not in this course:

You should be an experienced UNIX or Linux user, familiar with basic commands, man pages and
documentation

•

Being able to use a text editor•
Understand system boot and shutdown processes, init and initscripts•
Create users and groups, set passwords•
Permissions, special modes•
Understand naming conventions for devices, partitioning, mounting/unmounting file systems•
Adding/removing software on your system•

See Introduction to Linux (or your local TLDP mirror) if you haven't mastered one or more of these topics.
Additional information can be found in your system documentation (man and info pages), or at the Linux
Documentation Project.

Introduction 1

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/intro-linux/html/
http://www.tldp.org/mirrors.html
http://tldp.org
http://tldp.org

3. New versions and availability

The most recent edition can be found at http://tille.soti.org/training/bash/. You should find the same version at
http://tldp.org/LDP/Bash−Beginners−Guide/html/index.html.

This guide is available in print from Fultus.com.

Figure 1. Bash Guide for Beginners front cover

4. Revision History

Revision History

Revision 1.3 2004−07−09 Revised by: MG

Added tracer image 1x1 pixel http://tille.soti.org/images/blank−bash.png, added textobjects for all pictures,
fixed wrong links in index, made signal list more clear.

Revision 1.2 2004−06−15 Revised by: MG

Added index, more markup in screen sections.

Revision 1.1 2004−05−22 Revised by: MG

Last read−through before going to press, added more examples, checked summaries, exercises, cleaned up
introduction.

Revision 1.0 2004−04−27 Revised by: TM

Initial release for LDP; more exercises, more markup, less errors and abuse; added glossary.

Revision 1.0−beta 2003−04−20 Revised by: MG

Pre−release

Bash Guide for Beginners

Introduction 2

http://tille.soti.org/training/bash/
http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://store.fultus.com/product_info.php?products_id=66

5. Contributions

Thanks to all the friends who helped (or tried to) and to my husband; your encouraging words made this work
possible. Thanks to all the people who submitted bug reports, examples and remarks − among many, many
others:

Hans Bol, one of the groupies•
Mike Sim, remarks on style•
Dan Richter, for array examples•
Gerg Ferguson, for ideas on the title•
Mendel Leo Cooper, for making room•
#linux.be, for keeping my feet on the ground•

Special thanks to Tabatha Marshall, who volunteered to do a complete review and spell and grammar check.
We make a great team: she works when I sleep. And vice versa ;−)

6. Feedback

Missing information, missing links, missing characters, remarks? Mail it to

<tille@coresequence.com>

the maintainer of this document.

7. Copyright information

Copyright © 2003 Machtelt Garrels.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being "New versions of this document", "Contributions", "Feedback" and "Copyright
information", with no Front−Cover Texts and no Back−Cover Texts. A copy of the license is included in
Appendix B entitled "GNU Free Documentation License".

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is offered without warranty, either express or
implied. Neither the author nor the publisher nor any dealer or distributor will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

The logos, trademarks and symbols used in this book are the properties of their respective owners.

Bash Guide for Beginners

Introduction 3

mailto:tille@coresequence.com

8. What do you need?

bash, available from http://www.gnu.org/directory/GNU/. The Bash shell is available on nearly every Linux
system, and can these days be found on a wide variety of UNIX systems.

Compiles easily if you need to make your own, tested on a wide variety of UNIX, Linux, MS Windows and
other systems.

9. Conventions used in this document

The following typographic and usage conventions occur in this text:

Table 1. Typographic and usage conventions

Text type Meaning

"Quoted text" Quotes from people, quoted computer output.

terminal view
Literal computer input and output captured from the terminal, usually rendered with
a light grey background.

command Name of a command that can be entered on the command line.

VARIABLE Name of a variable or pointer to content of a variable, as in $VARNAME.

option Option to a command, as in "the −a option to the ls command".

argument Argument to a command, as in "read man ls".

command options
arguments

Command synopsis or general usage, on a separated line.

filename Name of a file or directory, for example "Change to the /usr/bin directory."

Key Keys to hit on the keyboard, such as "type Q to quit".

Button Graphical button to click, like the OK button.

Menu−>Choice
Choice to select from a graphical menu, for instance: "Select Help−>About Mozilla
in your browser."

Terminology Important term or concept: "The Linux kernel is the heart of the system."

\

The backslash in a terminal view or command synopsis indicates an unfinished line.
In other words, if you see a long command that is cut into multiple lines, \ means
"Don't press Enter yet!"

See Chapter 1 link to related subject within this guide.

The author Clickable link to an external web resource.

10. Organization of this document

This guide discusses concepts useful in the daily life of the serious Bash user. While a basic knowledge of the
usage of the shell is required, we start with a discussion of the basic shell components and practices in the first

Bash Guide for Beginners

Introduction 4

http://www.gnu.org/directory/GNU/
http://tille.soti.org

three chapters.

Chapters four to six are discussions of basic tools that are commonly used in shell scripts.

Chapters eight to twelve discuss the most common constructs in shell scripts.

All chapters come with exercises that will test your preparedness for the next chapter.

Chapter 1: Bash basics: why Bash is so good, building blocks, first guidelines on developing good
scripts.

•

Chapter 2: Script basics: writing and debugging.•
Chapter 3: The Bash Environment: initialization files, variables, quoting characters, shell expansion
order, aliases, options.

•

Chapter 4: Regular expressions: an introduction.•
Chapter 5: Sed: an introduction to the sed line editor.•
Chapter 6:Awk: introduction to the awk programming language.•
Chapter 7: Conditional statements: constructs used in Bash to test conditions.•
Chapter 8: Interactive scripts: making scripts user−friendly, catching user input.•
Chapter 9: Executing commands repetitively: constructs used in Bash to automate command
execution.

•

Chapter 10: Advanced variables: specifying variable types, introduction to arrays of variables,
operations on variables.

•

Chapter 11: Functions: an introduction.•
Chapter 12: Catching signals: introduction to process signalling, trapping user−sent signals.•

Bash Guide for Beginners

Introduction 5

Chapter 1. Bash and Bash scripts

In this introduction module we

Describe some common shells♦
Point out GNU Bash advantages and features♦
Describe the shell's building blocks♦
Discuss Bash initialization files♦
See how the shell executes commands♦
Look into some simple script examples♦

1.1. Common shell programs

1.1.1. General shell functions

The UNIX shell program interprets user commands, which are either directly entered by the user, or which
can be read from a file called the shell script or shell program. Shell scripts are interpreted, not compiled. The
shell reads commands from the script line per line and searches for those commands on the system (see
Section 1.2), while a compiler converts a program into machine readable form, an executable file − which
may then be used in a shell script.

Apart from passing commands to the kernel, the main task of a shell is providing a user environment, which
can be configured individually using shell resource configuration files.

1.1.2. Shell types

Just like people know different languages and dialects, your UNIX system will usually offer a variety of shell
types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX−related environments.
This is the basic shell, a small program with few features. While this is not the standard shell, it is still
available on every Linux system for compatibility with UNIX programs.

•

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable
for beginning users while being at the same time a powerful tool for the advanced and professional
user. On Linux, bash is the standard shell for common users. This shell is a so−called superset of the
Bourne shell, a set of add−ons and plug−ins. This means that the Bourne Again shell is compatible
with the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not
always the case. All examples and exercises in this book use bash.

•

csh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes
asked for by programmers.

•

tcsh or Turbo C shell: a superset of the common C shell, enhancing user−friendliness and speed.•
ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the
Bourne shell; with standard configuration a nightmare for beginning users.

•

The file /etc/shells gives an overview of known shells on a Linux system:

mia:~> cat /etc/shells
/bin/bash

Chapter 1. Bash and Bash scripts 6

/bin/sh
/bin/tcsh
/bin/csh

Your default shell is set in the /etc/passwd file, like this line for user mia:

mia:L2NOfqdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active terminal. The system
finds the directory where the name occurs using the PATH settings, and since a shell is an executable file
(program), the current shell activates it and it gets executed. A new prompt is usually shown, because each
shell has its typical appearance:

mia:~> tcsh
[mia@post21 ~]$

1.2. Advantages of the Bourne Again SHell

1.2.1. Bash is the GNU shell

The GNU project (GNU's Not UNIX) provides tools for UNIX−like system administration which are free
software and comply to UNIX standards.

Bash is an sh−compatible shell that incorporates useful features from the Korn shell (ksh) and C shell (csh). It
is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard. It offers functional
improvements over sh for both programming and interactive use; these include command line editing,
unlimited size command history, job control, shell functions and aliases, indexed arrays of unlimited size, and
integer arithmetic in any base from two to sixty−four. Bash can run most sh scripts without modification.

Like the other GNU projects, the bash initiative was started to preserve, protect and promote the freedom to
use, study, copy, modify and redistribute software. It is generally known that such conditions stimulate
creativity. This was also the case with the bash program, which has a lot of extra features that other shells
can't offer.

1.2.2. Features only found in bash

1.2.2.1. Invocation

In addition to the single−character shell command line options which can generally be configured using the
set shell built−in command, there are several multi−character options that you can use. We will come across a
couple of the more popular options in this and the following chapters; the complete list can be found in the
Bash info pages, Bash features−>Invoking Bash.

1.2.2.2. Bash startup files

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 7

1.2.2.2.1. Invoked as an interactive login shell, or with `−−login'

Interactive means you can enter commands. The shell is not running because a script has been activated. A
login shell means that you got the shell after authenticating to the system, usually by giving your user name
and password.

Files read:

/etc/profile•
~/.bash_profile, ~/.bash_login or ~/.profile: first existing readable file is read•
~/.bash_logout upon logout.•

Error messages are printed if configuration files exist but are not readable. If a file does not exist, bash
searches for the next.

1.2.2.2.2. Invoked as an interactive non−login shell

A non−login shell means that you did not have to authenticate to the system. For instance, when you open a
terminal using an icon, or a menu item, that is a non−login shell.

Files read:

~/.bashrc•

This file is usually referred to in ~/.bash_profile:

if [−f ~/.bashrc]; then . ~/.bashrc; fi

See Chapter 7 for more information on the if construct.

1.2.2.2.3. Invoked non−interactively

All scripts use non−interactive shells. They are programmed to do certain tasks and cannot be instructed to do
other jobs than those for which they are programmed.

Files read:

defined by BASH_ENV•

PATH is not used to search for this file, so if you want to use it, best refer to it by giving the full path and file
name.

1.2.2.2.4. Invoked with the sh command

Bash tries to behave as the historical Bourne sh program while conforming to the POSIX standard as well.

Files read:

/etc/profile•
~/.profile•

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 8

When invoked interactively, the ENV variable can point to extra startup information.

1.2.2.2.5. POSIX mode

This option is enabled either using the set built−in:

set −o posix

or by calling the bash program with the −−posix option. Bash will then try to behave as compliant as
possible to the POSIX standard for shells. Setting the POSIXLY_CORRECT variable does the same.

Files read:

defined by ENV variable.•

1.2.2.2.6. Invoked remotely

Files read when invoked by rshd:

~/.bashrc•

Avoid use of r−tools

Be aware of the dangers when using tools such as rlogin, telnet, rsh and rcp. They are intrinsically
insecure because confidential data is sent over the network unencrypted. If you need tools for remote
execution, file transfer and so on, use an implementation of Secure SHell, generally known as SSH,
freely available from http://www.openssh.org. Different client programs are available for non−UNIX
systems as well, see your local software mirror.

1.2.2.2.7. Invoked when UID is not equal to EUID

No startup files are read in this case.

1.2.2.3. Interactive shells

1.2.2.3.1. What is an interactive shell?

An interactive shell generally reads from, and writes to, a user's terminal: input and output are connected to a
terminal. Bash interactive behavior is started when the bash command is called upon without non−option
arguments, except when the option is a string to read from or when the shell is invoked to read from standard
input, which allows for positional parameters to be set (see Chapter 3).

1.2.2.3.2. Is this shell interactive?

Test by looking at the content of the special parameter −, it contains an 'i' when the shell is interactive:

eddy:~> echo $−
himBH

In non−interactive shells, the prompt, PS1, is unset.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 9

http://www.openssh.org

1.2.2.3.3. Interactive shell behavior

Differences in interactive mode:

Bash reads startup files.•
Job control enabled by default.•
Prompts are set, PS2 is enabled for multi−line commands, it is usually set to ">". This is also the
prompt you get when the shell thinks you entered an unfinished command, for instance when you
forget quotes, command structures that cannot be left out, etc.

•

Commands are by default read from the command line using readline.•
Bash interprets the shell option ignoreeof instead of exiting immediately upon receiving EOF
(End Of File).

•

Command history and history expansion are enabled by default. History is saved in the file pointed to
by HISTFILE when the shell exits. By default, HISTFILE points to ~/.bash_history.

•

Alias expansion is enabled.•
In the absence of traps, the SIGTERM signal is ignored.•
In the absence of traps, SIGINT is caught and handled. Thus, typing Ctrl+C, for example, will not
quit your interactive shell.

•

Sending SIGHUP signals to all jobs on exit is configured with the huponexit option.•
Commands are executed upon read.•
Bash checks for mail periodically.•
Bash can be configured to exit when it encounters unreferenced variables. In interactive mode this
behavior is disabled.

•

When shell built−in commands encounter redirection errors, this will not cause the shell to exit.•
Special built−ins returning errors when used in POSIX mode don't cause the shell to exit. The built−in
commands are listed in Section 1.3.

•

Failure of exec will not exit the shell.•
Parser syntax errors don't cause the shell to exit.•
Simple spell check for the arguments to the cd built−in is enabled by default.•
Automatic exit after the length of time specified in the TMOUT variable has passed, is enabled.•

More information:

Section 3.2•
Section 3.6•
See Chapter 12 for more about signals.•
Section 3.4 discusses the various expansions performed upon entering a command.•

1.2.2.4. Conditionals

Conditional expressions are used by the [[compound command and by the test and [built−in commands.

Expressions may be unary or binary. Unary expressions are often used to examine the status of a file. You
only need one object, for instance a file, to do the operation on.

There are string operators and numeric comparison operators as well; these are binary operators, requiring two
objects to do the operation on. If the FILE argument to one of the primaries is in the form /dev/fd/N, then
file descriptor N is checked. If the FILE argument to one of the primaries is one of /dev/stdin,
/dev/stdout or /dev/stderr, then file descriptor 0, 1 or 2 respectively is checked.

Conditionals are discussed in detail in Chapter 7.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 10

More information about the file descriptors in Section 8.2.3.

1.2.2.5. Shell arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell expansions or by the let built−in.

Evaluation is done in fixed−width integers with no check for overflow, though division by 0 is trapped and
flagged as an error. The operators and their precedence and associativity are the same as in the C language,
see Chapter 3.

1.2.2.6. Aliases

Aliases allow a string to be substituted for a word when it is used as the first word of a simple command. The
shell maintains a list of aliases that may be set and unset with the alias and unalias commands.

Bash always reads at least one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input is read. The
commands following the alias definition on that line are not affected by the new alias.

Aliases are expanded when a function definition is read, not when the function is executed, because a function
definition is itself a compound command. As a consequence, aliases defined in a function are not available
until after that function is executed.

We will discuss aliases in detail in Section 3.5.

1.2.2.7. Arrays

Bash provides one−dimensional array variables. Any variable may be used as an array; the declare built−in
will explicitly declare an array. There is no maximum limit on the size of an array, nor any requirement that
members be indexed or assigned contiguously. Arrays are zero−based. See Chapter 10.

1.2.2.8. Directory stack

The directory stack is a list of recently−visited directories. The pushd built−in adds directories to the stack as
it changes the current directory, and the popd built−in removes specified directories from the stack and
changes the current directory to the directory removed.

Content can be displayed issuing the dirs command or by checking the content of the DIRSTACK variable.

More information about the workings of this mechanism can be found in the Bash info pages.

1.2.2.9. The prompt

Bash makes playing with the prompt even more fun. See the section Controlling the Prompt in the Bash info
pages.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 11

1.2.2.10. The restricted shell

When invoked as rbash or with the −−restricted or −r option, the following happens:

The cd built−in is disabled.•
Setting or unsetting SHELL, PATH, ENV or BASH_ENV is not possible.•
Command names can no longer contain slashes.•
Filenames containing a slash are not allowed with the . (source) built−in command.•
The hash built−in does not accept slashes with the −p option.•
Import of functions at startup is disabled.•
SHELLOPTS is ignored at startup.•
Output redirection using >, >|, ><, >&, &> and >> is disabled.•
The exec built−in is disabled.•
The −f and −d options are disabled for the enable built−in.•
A default PATH cannot be specified with the command built−in.•
Turning off restricted mode is not possible.•

When a command that is found to be a shell script is executed, rbash turns off any restrictions in the shell
spawned to execute the script.

More information:

Section 3.2•
Section 3.6•
Info Bash−>Basic Shell Features−>Redirections•
Section 8.2.3: advanced redirection•

1.3. Executing commands

1.3.1. General

Bash determines the type of program that is to be executed. Normal programs are system commands that exist
in compiled form on your system. When such a program is executed, a new process is created because Bash
makes an exact copy of itself. This child process has the same environment as its parent, only the process ID
number is different. This procedure is called forking.

After the forking process, the address space of the child process is overwritten with the new process data. This
is done through an exec call to the system.

The fork−and−exec mechanism thus switches an old command with a new, while the environment in which
the new program is executed remains the same, including configuration of input and output devices,
environment variables and priority. This mechanism is used to create all UNIX processes, so it also applies to
the Linux operating system. Even the first process, init, with process ID 1, is forked during the boot procedure
in the so−called bootstrapping procedure.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 12

1.3.2. Shell built−in commands

Built−in commands are contained within the shell itself. When the name of a built−in command is used as the
first word of a simple command, the shell executes the command directly, without creating a new process.
Built−in commands are necessary to implement functionality impossible or inconvenient to obtain with
separate utilities.

Bash supports 3 types of built−in commands:

Bourne Shell built−ins:

:, ., break, cd, continue, eval, exec, exit, export, getopts, hash, pwd, readonly, return, set, shift,
test, [, times, trap, umask and unset.

•

Bash built−in commands:

alias, bind, builtin, command, declare, echo, enable, help, let, local, logout, printf, read, shopt,
type, typeset, ulimit and unalias.

•

Special built−in commands:

When Bash is executing in POSIX mode, the special built−ins differ from other built−in commands in
three respects:

Special built−ins are found before shell functions during command lookup.1.
If a special built−in returns an error status, a non−interactive shell exits.2.
Assignment statements preceding the command stay in effect in the shell environment after
the command completes.

3.

The POSIX special built−ins are :, ., break, continue, eval, exec, exit, export, readonly, return, set,
shift, trap and unset.

•

Most of these built−ins will be discussed in the next chapters. For those commands for which this is not the
case, we refer to the Info pages.

1.3.3. Executing programs from a script

When the program being executed is a shell script, bash will create a new bash process using a fork. This
subshell reads the lines from the shell script one line at a time. Commands on each line are read, interpreted
and executed as if they would have come directly from the keyboard.

While the subshell processes each line of the script, the parent shell waits for its child process to finish. When
there are no more lines in the shell script to read, the subshell terminates. The parent shell awakes and
displays a new prompt.

1.4. Building blocks

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 13

1.4.1. Shell building blocks

1.4.1.1. Shell syntax

If input is not commented, the shell reads it and divides it into words and operators, employing quoting rules
to define the meaning of each character of input. Then these words and operators are translated into
commands and other constructs, which return an exit status available for inspection or processing. The above
fork−and−exec scheme is only applied after the shell has analyzed input in the following way:

The shell reads its input from a file, from a string or from the user's terminal.•
Input is broken up into words and operators, obeying the quoting rules, see Chapter 3. These tokens
are separated by metacharacters. Alias expansion is performed.

•

The shell parses (analyzes and substitutes) the tokens into simple and compound commands.•
Bash performs various shell expansions, breaking the expanded tokens into lists of filenames and
commands and arguments.

•

Redirection is performed if necessary, redirection operators and their operands are removed from the
argument list.

•

Commands are executed.•
Optionally the shell waits for the command to complete and collects its exit status.•

1.4.1.2. Shell commands

A simple shell command such as touch file1file2 file3 consists of the command itself followed by
arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in a variety of ways: in
a pipeline in which the output of one command becomes the input of a second, in a loop or conditional
construct, or in some other grouping. A couple of examples:

ls | more

gunzip file.tar.gz | tar xvf −

1.4.1.3. Shell functions

Shell functions are a way to group commands for later execution using a single name for the group. They are
executed just like a "regular" command. When the name of a shell function is used as a simple command
name, the list of commands associated with that function name is executed.

Shell functions are executed in the current shell context; no new process is created to interpret them.

Functions are explained in Chapter 11.

1.4.1.4. Shell parameters

A parameter is an entity that stores values. It can be a name, a number or a special value. For the shell's
purpose, a variable is a parameter that stores a name. A variable has a value and zero or more attributes.
Variables are created with the declare shell built−in command.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 14

If no value is given, a variable is assigned the null string. Variables can only be removed with the unset
built−in.

Assigning variables is discussed in Section 3.2, advanced use of variables in Chapter 10.

1.4.1.5. Shell expansions

Shell expansion is performed after each command line has been split into tokens. These are the expansions
performed:

Brace expansion•
Tilde expansion•
Parameter and variable expansion•
Command substitution•
Arithmetic expansion•
Word splitting•
Filename expansion•

We'll discuss these expansion types in detail in Section 3.4.

1.4.1.6. Redirections

Before a command is executed, its input and output may be redirected using a special notation interpreted by
the shell. Redirection may also be used to open and close files for the current shell execution environment.

1.4.1.7. Executing commands

When executing a command, the words that the parser has marked as variable assignments (preceding the
command name) and redirections are saved for later reference. Words that are not variable assignments or
redirections are expanded; the first remaining word after expansion is taken to be the name of the command
and the rest are arguments to that command. Then redirections are performed, then strings assigned to
variables are expanded. If no command name results, variables will affect the current shell environment.

An important part of the tasks of the shell is to search for commands. Bash does this as follows:

Check whether the command contains slashes. If not, first check with the function list to see if it
contains a command by the name we are looking for.

•

If command is not a function, check for it in the built−in list.•
If command is neither a function nor a built−in, look for it analyzing the directories listed in PATH.
Bash uses a hash table (data storage area in memory) to remember the full path names of executables
so extensive PATH searches can be avoided.

•

If the search is unsuccessful, bash prints an error message and returns an exit status of 127.•
If the search was successful or if the command contains slashes, the shell executes the command in a
separate execution environment.

•

If execution fails because the file is not executable and not a directory, it is assumed to be a shell
script.

•

If the command was not begun asynchronously, the shell waits for the command to complete and
collects its exit status.

•

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 15

1.4.1.8. Shell scripts

When a file containing shell commands is used as the first non−option argument when invoking Bash
(without −c or −s, this will create a non−interactive shell. This shell first searches for the script file in the
current directory, then looks in PATH if the file cannot be found there.

1.5. Developing good scripts

1.5.1. Properties of good scripts

This guide is mainly about the last shell building block, scripts. Some general considerations before we
continue:

A script should run without errors.1.
It should perform the task for which it is intended.2.
Program logic is clearly defined and apparent.3.
A script does not do unnecessary work.4.
Scripts should be reusable.5.

1.5.2. Structure

The structure of a shell script is very flexible. Even though in Bash a lot of freedom is granted, you must
ensure correct logic, flow control and efficiency so that users executing the script can do so easily and
correctly.

When starting on a new script, ask yourself the following questions:

Will I be needing any information from the user or from the user's environment?•
How will I store that information?•
Are there any files that need to be created? Where and with which permissions and ownerships?•
What commands will I use? When using the script on different systems, do all these systems have
these commands in the required versions?

•

Does the user need any notifications? When and why?•

1.5.3. Terminology

The table below gives an overview of programming terms that you need to be familiar with:

Table 1−1. Overview of programming terms

Term What is it?

Command control
Testing exit status of a command in order to determine whether a portion of the
program should be executed.

Conditional branch Logical point in the program when a condition determines what happens next.

Logic flow

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 16

The overall design of the program. Determines logical sequence of tasks so that the
result is successful and controlled.

Loop Part of the program that is performed zero or more times.

User input
Information provided by an external source while the program is running, can be
stored and recalled when needed.

1.5.4. A word on order and logic

In order to speed up the developing process, the logical order of a program should be thought over in advance.
This is your first step when developing a script.

A number of methods can be used; one of the most common is working with lists. Itemizing the list of tasks
involved in a program allows you to describe each process. Individual tasks can be referenced by their item
number.

Using your own spoken language to pin down the tasks to be executed by your program will help you to
create an understandable form of your program. Later, you can replace the everyday language statements with
shell language words and constructs.

The example below shows such a logic flow design. It describes the rotation of log files. This example shows
a possible repetitive loop, controlled by the number of base log files you want to rotate:

Do you want to rotate logs?

If yes:

Enter directory name containing the logs to be rotated.i.
Enter base name of the log file.ii.
Enter number of days logs should be kept.iii.
Make settings permanent in user's crontab file.iv.

a.

If no, go to step 3.b.

1.

Do you want to rotate another set of logs?

If yes: repeat step 1.a.
If no: go to step 3.b.

2.

Exit3.

The user should provide information for the program to do something. Input from the user must be obtained
and stored. The user should be notified that his crontab will change.

1.5.5. An example Bash script: mysystem.sh

The mysystem.sh script below executes some well−known commands (date, w, uname, uptime) to
display information about you and your machine.

tom:~> cat −n mysystem.sh
 1 #!/bin/bash
 2 clear
 3 echo "This is information provided by mysystem.sh. Program starts now."
 4

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 17

 5 echo "Hello, $USER"
 6 echo
 7
 8 echo "Today's date is `date`, this is week `date +"%V"`."
 9 echo
 10
 11 echo "These users are currently connected:"
 12 w | cut −d " " −f 1 − | grep −v USER | sort −u
 13 echo
 14
 15 echo "This is `uname −s` running on a `uname −m` processor."
 16 echo
 17
 18 echo "This is the uptime information:"
 19 uptime
 20 echo
 21
 22 echo "That's all folks!"

A script always starts with the same two characters, "#!". After that, the shell that will execute the commands
following the first line is defined. This script starts with clearing the screen on line 2. Line 3 makes it print a
message, informing the user about what is going to happen. Line 5 greets the user. Lines 6, 9, 13, 16 and 20
are only there for orderly output display purposes. Line 8 prints the current date and the number of the week.
Line 11 is again an informative message, like lines 3, 18 and 22. Line 12 formats the output of the w; line 15
shows operating system and CPU information. Line 19 gives the uptime and load information.

Both echo and printf are Bash built−in commands. The first always exits with a 0 status, and simply prints
arguments followed by an end of line character on the standard output, while the latter allows for definition of
a formatting string and gives a non−zero exit status code upon failure.

This is the same script using the printf built−in:

tom:~> cat mysystem.sh
#!/bin/bash
clear
printf "This is information provided by mysystem.sh. Program starts now."

printf "Hello, $USER.\n\n"

printf "Today's date is `date`, this is week `date +"%V"`.\n\n"

printf "These users are currently connected:\n"
w | cut −d " " −f 1 − | grep −v USER | sort −u
printf "\n"

printf "This is `uname −s` running on a `uname −m` processor.\n\n"

printf "This is the uptime information:\n"
uptime
printf "\n"

printf "That's all folks!\n"

Creating user friendly scripts by means of inserting messages is treated in Chapter 8.

Standard location of the Bourne Again shell

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 18

This implies that the bash program is installed in /bin.

If stdout is not available

If you execute a script from cron, supply full path names and redirect output and errors. Since the shell
runs in non−interactive mode, any errors will cause the script to exit prematurely if you don't think about
this.

The following chapters will discuss the details of the above scripts.

1.5.6. Example init script

An init script starts system services on UNIX and Linux machines. The system log daemon, the power
management daemon, the name and mail daemons are common examples. These scripts, also known as
startup scripts, are stored in a specific location on your system, such as /etc/rc.d/init.d or
/etc/init.d. Init, the initial process, reads its configuration files and decides which services to start or
stop in each run level. A run level is a configuration of processes; each system has a single user run level, for
instance, for performing administrative tasks, for which the system has to be in an unused state as much as
possible, such as recovering a critical file system from a backup. Reboot and shutdown run levels are usually
also configured.

The tasks to be executed upon starting a service or stopping it are listed in the startup scripts. It is one of the
system administrator's tasks to configure init, so that services are started and stopped at the correct moment.
When confronted with this task, you need a good understanding of the startup and shutdown procedures on
your system. We therefore advise that you read the man pages for init and inittab before starting on your
own initialization scripts.

Here is a very simple example, that will play a sound upon starting and stopping your machine:

#!/bin/bash

This script is for /etc/rc.d/init.d
Link in rc3.d/S99audio−greeting and rc0.d/K01audio−greeting

case "$1" in
'start')
 cat /usr/share/audio/at_your_service.au > /dev/audio
 ;;
'stop')
 cat /usr/share/audio/oh_no_not_again.au > /dev/audio
 ;;
esac
exit 0

The case statement often used in this kind of script is described in Section 7.2.5.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 19

1.6. Summary

Bash is the GNU shell, compatible with the Bourne shell and incorporating many useful features from other
shells. When the shell is started, it reads its configuration files. The most important are:

/etc/profile•
~/.bash_profile•
~/.bashrc•

Bash behaves different when in interactive mode and also has a POSIX compliant and a restricted mode.

Shell commands can be split up in three groups: the shell functions, shell built−ins and existing commands in
a directory on your system. Bash supports additional built−ins not found in the plain Bourne shell.

Shell scripts consist of these commands arranged as shell syntax dictates. Scripts are read and executed line
per line and should have a logical structure.

1.7. Exercises

These are some exercises to warm you up for the next chapter:

Where is the bash program located on your system?1.
Use the −−version option to find out which version you are running.2.
Which shell configuration files are read when you login to your system using the graphical user
interface and then opening a terminal window?

3.

Are the following shells interactive shells? Are they login shells?

A shell opened by clicking on the background of your graphical desktop, selecting "Terminal"
or such from a menu.

♦

A shell that you get after issuing the command ssh localhost.♦
A shell that you get when logging in to the console in text mode.♦
A shell obtained by the command xterm &.♦
A shell opened by the mysystem.sh script.♦
A shell that you get on a remote host, for which you didn't have to give the login and/or
password because you use SSH and maybe SSH keys.

♦

4.

Can you explain why bash does not exit when you type Ctrl+C on the command line?5.
Display directory stack content.6.
If it is not yet the case, set your prompt so that it displays your location in the file system hierarchy,
for instance add this line to ~/.bashrc:

export PS1="\u@\h \w> "

7.

Display hashed commands for your current shell session.8.
How many processes are currently running on your system? Use ps and wc, the first line of output of
ps is not a process!

9.

How to display the system hostname? Only the name, nothing more!10.

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 20

Bash Guide for Beginners

Chapter 1. Bash and Bash scripts 21

Chapter 2. Writing and debugging scripts

After going through this chapter, you will be able to:

Write a simple script♦
Define the shell type that should execute the script♦
Put comments in a script♦
Change permissions on a script♦
Execute and debug a script♦

2.1. Creating and running a script

2.1.1. Writing and naming

A shell script is a sequence of commands for which you have a repeated use. This sequence is typically
executed by entering the name of the script on the command line. Alternatively, you can use scripts to
automate tasks using the cron facility. Another use for scripts is in the UNIX boot and shutdown procedure,
where operation of daemons and services are defined in init scripts.

To create a shell script, open a new empty file in your editor. Any text editor will do: vim, emacs, gedit,
dtpad et cetera are all valid. You might want to chose a more advanced editor like vim or emacs, however,
because these can be configured to recognize shell and Bash syntax and can be a great help in preventing
those errors that beginners frequently make, such as forgetting brackets and semi−colons.

Put UNIX commands in the new empty file, like you would enter them on the command line. As discussed in
the previous chapter (see Section 1.3), commands can be shell functions, shell built−ins, UNIX commands
and other scripts.

Give your script a sensible name that gives a hint about what the script does. Make sure that your script name
does not conflict with existing commands. In order to ensure that no confusion can rise, script names often
end in .sh; even so, there might be other scripts on your system with the same name as the one you chose.
Check using which, whereis and other commands for finding information about programs and files:

which −a script_name

whereis script_name

locate script_name

2.1.2. script1.sh

In this example we use the echo Bash built−in to inform the user about what is going to happen, before the
task that will create the output is executed. It is strongly advised to inform users about what a script is doing,
in order to prevent them from becoming nervous because the script is not doing anything. We will return to
the subject of notifying users in Chapter 8.

Chapter 2. Writing and debugging scripts 22

Figure 2−1. script1.sh

Write this script for yourself as well. It might be a good idea to create a directory ~/scripts to hold your
scripts. Add the directory to the contents of the PATH variable:

export PATH="$PATH:~/scripts"

If you are just getting started with Bash, use a text editor that uses different colours for different shell
constructs. Syntax highlighting is supported by vim, gvim, (x)emacs, kwrite and many other editors; check
the documentation of your favorite editor.

Different prompts

The prompts throughout this course vary depending on the author's mood. This resembles much more
real life situations than the standard educational $ prompt. The only convention we stick to, is that the
root prompt ends in a hash mark (#).

2.1.3. Executing the script

The script should have execute permissions for the correct owners in order to be runnable. When setting
permissions, check that you really obtained the permissions that you want. When this is done, the script can
run like any other command:

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 23

willy:~/scripts> chmod u+x script1.sh

willy:~/scripts> ls −l script1.sh
−rwxrw−r−− 1 willy willy 456 Dec 24 17:11 script1.sh

willy:~> script1.sh
The script starts now.
Hi, willy!

I will now fetch you a list of connected users:

 3:38pm up 18 days, 5:37, 4 users, load average: 0.12, 0.22, 0.15
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 − Sat 2pm 4:25m 0.24s 0.05s −bash
willy :0 − Sat 2pm ? 0.00s ? −
willy pts/3 − Sat 2pm 3:33m 36.39s 36.39s BitchX willy ir
willy pts/2 − Sat 2pm 3:33m 0.13s 0.06s /usr/bin/screen

I'm setting two variables now.
This is a string: black
And this is a number: 9

I'm giving you back your prompt now.

willy:~/scripts> echo $COLOUR

willy:~/scripts> echo $VALUE

willy:~/scripts>

This is the most common way to execute a script. It is preferred to execute the script like this in a subshell.
The variables, functions and aliases created in this subshell are only known to the particular bash session of
that subshell. When that shell exits and the parent regains control, everything is cleaned up and all changes to
the state of the shell made by the script, are forgotten.

If you did not put the scripts directory in your PATH, and . (the current directory) is not in the PATH
either, you can activate the script like this:

./script_name.sh

A script can also explicitly be executed by a given shell, but generally we only do this if we want to obtain
special behavior, such as checking if the script works with another shell or printing traces for debugging:

rbash script_name.sh

sh script_name.sh

bash −x script_name.sh

The specified shell will start as a subshell of your current shell and execute the script. This is done when you
want the script to start up with specific options or under specific conditions which are not specified in the
script.

If you don't want to start a new shell but execute the script in the current shell, you source it:

source script_name.sh

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 24

source = .

The Bash source built−in is a synonym for the Bourne shell . (dot) command.

The script does not need execute permission in this case. Commands are executed in the current shell context,
so any changes made to your environment will be visible when the script finishes execution:

willy:~/scripts> source script1.sh
−−output ommitted−−

willy:~/scripts> echo $VALUE
9

willy:~/scripts>

2.2. Script basics

2.2.1. Which shell will run the script?

When running a script in a subshell, you should define which shell should run the script. The shell type in
which you wrote the script might not be the default on your system, so commands you entered might result in
errors when executed by the wrong shell.

The first line of the script determines the shell to start. The first two characters of the first line should be #!,
then follows the path to the shell that should interpret the commands that follow. Blank lines are also
considered to be lines, so don't start your script with an empty line.

For the purpose of this course, all scripts will start with the line

#!/bin/bash

As noted before, this implies that the Bash executable can be found in /bin.

2.2.2. Adding comments

You should be aware of the fact that you might not be the only person reading your code. A lot of users and
system administrators run scripts that were written by other people. If they want to see how you did it,
comments are useful to enlighten the reader.

Comments also make your own life easier. Say that you had to read a lot of man pages in order to achieve a
particular result with some command that you used in your script. You won't remember how it worked if you
need to change your script after a few weeks or months, unless you have commented what you did, how you
did it and/or why you did it.

Take the script1.sh example and copy it to commented−script1.sh, which we edit so that the
comments reflect what the script does. Everything the shell encounters after a hash mark on a line is ignored
and only visible upon opening the shell script file:

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 25

#!/bin/bash
This script clears the terminal, displays a greeting and gives information
about currently connected users. The two example variables are set and displayed.

clear # clear terminal window

echo "The script starts now."

echo "Hi, $USER!" # dollar sign is used to get content of variable
echo

echo "I will now fetch you a list of connected users:"
echo
w # show who is logged on and
echo # what they are doing

echo "I'm setting two variables now."
COLOUR="black" # set a local shell variable
VALUE="9" # set a local shell variable
echo "This is a string: $COLOUR" # display content of variable
echo "And this is a number: $VALUE" # display content of variable
echo

echo "I'm giving you back your prompt now."
echo

In a decent script, the first lines are usually comment about what to expect. Then each big chunk of commands
will be commented as needed for clarity's sake. Linux init scripts, as an example, in your system's init.d
directory, are usually well commented since they have to be readable and editable by everyone running Linux.

2.3. Debugging Bash scripts

2.3.1. Debugging on the entire script

When things don't go according to plan, you need to determine what exactly causes the script to fail. Bash
provides extensive debugging features. The most common is to start up the subshell with the −x option, which
will run the entire script in debug mode. Traces of each command plus its arguments are printed to standard
output after the commands have been expanded but before they are executed.

This is the commented−script1.sh script ran in debug mode. Note again that the added comments are
not visible in the output of the script.

willy:~/scripts> bash −x script1.sh
+ clear

+ echo 'The script starts now.'
The script starts now.
+ echo 'Hi, willy!'
Hi, willy!
+ echo

+ echo 'I will now fetch you a list of connected users:'
I will now fetch you a list of connected users:
+ echo

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 26

+ w
 4:50pm up 18 days, 6:49, 4 users, load average: 0.58, 0.62, 0.40
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 − Sat 2pm 5:36m 0.24s 0.05s −bash
willy :0 − Sat 2pm ? 0.00s ? −
willy pts/3 − Sat 2pm 43:13 36.82s 36.82s BitchX willy ir
willy pts/2 − Sat 2pm 43:13 0.13s 0.06s /usr/bin/screen
+ echo

+ echo 'I'\''m setting two variables now.'
I'm setting two variables now.
+ COLOUR=black
+ VALUE=9
+ echo 'This is a string: '
This is a string:
+ echo 'And this is a number: '
And this is a number:
+ echo

+ echo 'I'\''m giving you back your prompt now.'
I'm giving you back your prompt now.
+ echo

2.3.2. Debugging on part(s) of the script

Using the set Bash built−in you can run in normal mode those portions of the script of which you are sure
they are without fault, and display debugging information only for troublesome zones. Say we are not sure
what the w command will do in the example commented−script1.sh, then we could enclose it in the
script like this:

set −x # activate debugging from here
w
set +x # stop debugging from here

Output then looks like this:

willy: ~/scripts> script1.sh
The script starts now.
Hi, willy!

I will now fetch you a list of connected users:

+ w
 5:00pm up 18 days, 7:00, 4 users, load average: 0.79, 0.39, 0.33
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 − Sat 2pm 5:47m 0.24s 0.05s −bash
willy :0 − Sat 2pm ? 0.00s ? −
willy pts/3 − Sat 2pm 54:02 36.88s 36.88s BitchX willyke
willy pts/2 − Sat 2pm 54:02 0.13s 0.06s /usr/bin/screen
+ set +x

I'm setting two variables now.
This is a string:
And this is a number:

I'm giving you back your prompt now.

willy: ~/scripts>

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 27

You can switch debugging mode on and off as many times as you want within the same script.

The table below gives an overview of other useful Bash options:

Table 2−1. Overview of set debugging options

Short notation Long notation Result

set −f set −o noglob Disable file name generation using metacharacters (globbing).

set −v set −o verbosePrints shell input lines as they are read.

set −x set −o xtrace Print command traces before executing command.

The dash is used to activate a shell option and a plus to deactivate it. Don't let this confuse you!

In the example below, we demonstrate these options on the command line:

willy:~/scripts> set −v

willy:~/scripts> ls
ls
commented−scripts.sh script1.sh

willy:~/scripts> set +v
set +v

willy:~/scripts> ls *
commented−scripts.sh script1.sh

willy:~/scripts> set −f

willy:~/scripts> ls *
ls: *: No such file or directory

willy:~/scripts> touch *

willy:~/scripts> ls
* commented−scripts.sh script1.sh

willy:~/scripts> rm *

willy:~/scripts> ls
commented−scripts.sh script1.sh

Alternatively, these modes can be specified in the script itself, by adding the desired options to the first line
shell declaration. Options can be combined, as is usually the case with UNIX commands:

#!/bin/bash −xv

Once you found the buggy part of your script, you can add echo statements before each command of which
you are unsure, so that you will see exactly where and why things don't work. In the example
commented−script1.sh script, it could be done like this, still assuming that the displaying of users gives
us problems:

echo "debug message: now attempting to start w command"; w

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 28

In more advanced scripts, the echo can be inserted to display the content of variables at different stages in the
script, so that flaws can be detected:

echo "Variable VARNAME is now set to $VARNAME."

2.4. Summary

A shell script is a reusable series of commands put in an executable text file. Any text editor can be used to
write scripts.

Scripts start with #! followed by the path to the shell executing the commands from the script. Comments are
added to a script for your own future reference, and also to make it understandable for other users. It is better
to have too many explanations than not enough.

Debugging a script can be done using shell options. Shell options can be used for partial debugging or for
analyzing the entire script. Inserting echo commands at strategic locations is also a common troubleshooting
technique.

2.5. Exercises

This exercise will help you to create your first script.

Write a script using your favorite editor. The script should display the path to your homedirectory and
the terminal type that you are using. Additionally it shows all the services started up in runlevel 3 on
your system. (hint: use HOME, TERM and ls /etc/rc3.d/S*)

1.

Add comments in your script.2.
Add information for the users of your script.3.
Change permissions on your script so that you can run it.4.
Run the script in normal mode and in debug mode. It should run without errors.5.
Make errors in your script: see what happens if you misspell commands, if you leave out the first line
or put something unintelligible there, or if you misspell shell variable names or write them in lower
case characters after they have been declared in capitals. Check what the debug comments say about
this.

6.

Bash Guide for Beginners

Chapter 2. Writing and debugging scripts 29

Chapter 3. The Bash environment

In this chapter we will discuss the various ways in which the Bash environment can be
influenced:

Editing shell initialization files♦
Using variables♦
Using different quote styles♦
Perform arithmetic calculations♦
Assigning aliases♦
Using expansion and substitution♦

3.1. Shell initialization files

3.1.1. System−wide configuration files

3.1.1.1. /etc/profile

When invoked interactively with the −−login option or when invoked as sh, Bash reads the
/etc/profile instructions. These usually set the shell variables PATH, USER, MAIL, HOSTNAME and
HISTSIZE.

On some systems, the umask value is configured in /etc/profile; on other systems this file holds
pointers to other configuration files such as:

/etc/inputrc, the system−wide Readline initialization file where you can configure the command
line bell−style.

•

the /etc/profile.d directory, which contains files configuring system−wide behavior of specific
programs.

•

All settings that you want to apply to all your users' environments should be in this file. It might look like this:

/etc/profile

System wide environment and startup programs, for login setup

PATH=$PATH:/usr/X11R6/bin

No core files by default
ulimit −S −c 0 > /dev/null 2>&1

USER="`id −un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

Keyboard, bell, display style: the readline config file:
if [−z "$INPUTRC" −a ! −f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc

Chapter 3. The Bash environment 30

fi

PS1="\u@\h \W"

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC PS1

Source initialization files for specific programs (ls, vim, less, ...)
for i in /etc/profile.d/*.sh ; do
 if [−r "$i"]; then
 . $i
 fi
done

Settings for program initialization
source /etc/java.conf
export NPX_PLUGIN_PATH="$JRE_HOME/plugin/ns4plugin/:/usr/lib/netscape/plugins"

PAGER="/usr/bin/less"

unset i

This configuration file sets some basic shell environment variables as well as some variables required by users
running Java and/or Java applications in their web browser. See Section 3.2.

See Chapter 7 for more on the conditional if used in this file; Chapter 9 discusses loops such as the for
construct.

The Bash source contains sample profile files for general or individual use. These and the one in the
example above need changes in order for them to work in your environment!

3.1.1.2. /etc/bashrc

On systems offering multiple types of shells, it might be better to put Bash−specific configurations in this file,
since /etc/profile is also read by other shells, such as the Bourne shell. Errors generated by shells that
don't understand the Bash syntax are prevented by splitting the configuration files for the different types of
shells. In such cases, the user's ~/.bashrc might point to /etc/bashrc in order to include it in the shell
initialization process upon login.

You might also find that /etc/profile on your system only holds shell environment and program startup
settings, while /etc/bashrc contains system−wide definitions for shell functions and aliases. The
/etc/bashrc file might be referred to in /etc/profile or in individual user shell initialization files.

The source contains sample bashrc files, or you might find a copy in
/usr/share/doc/bash−2.05b/startup−files. This is part of the bashrc that comes with the
Bash documentation:

alias ll='ls −l'
alias dir='ls −ba'
alias c='clear'
alias ls='ls −−color'

alias mroe='more'
alias pdw='pwd'
alias sl='ls −−color'

pskill()

Bash Guide for Beginners

Chapter 3. The Bash environment 31

{
 local pid

 pid=$(ps −ax | grep $1 | grep −v grep | gawk '{ print $1 }')
 echo −n "killing $1 (process $pid)..."
 kill −9 $pid
 echo "slaughtered."
}

Apart from general aliases, it contains useful aliases which make commands work even if you misspell them.
We will discuss aliases in Section 3.5.2. This file contains a function, pskill; functions will be studied in detail
in Chapter 11.

3.1.2. Individual user configuration files

I don't have these files?!

These files might not be in your home directory by default; create them if needed.

3.1.2.1. ~/.bash_profile

This is the preferred configuration file for configuring user environments individually. In this file, users can
add extra configuration options or change default settings:

franky~> cat .bash_profile
###
#
.bash_profile file
#
Executed from the bash shell when you log in.
#
###

source ~/.bashrc
source ~/.bash_login
case "$OS" in
 IRIX)
 stty sane dec
 stty erase
 ;;
SunOS)
stty erase
;;
 *)
 stty sane
 ;;
esac

This user configures the backspace character for login on different operating systems. Apart from that, the
user's .bashrc and .bash_login are read.

Bash Guide for Beginners

Chapter 3. The Bash environment 32

3.1.2.2. ~/.bash_login

This file contains specific settings that are normally only executed when you log in to the system. In the
example, we use it to configure the umask value and to show a list of connected users upon login. This user
also gets the calendar for the current month:

###
#
Bash_login file
#
commands to perform from the bash shell at login time
(sourced from .bash_profile)
#
###
file protection
umask 002 # all to me, read to group and others
miscellaneous
w
cal `date +"%m"` `date +"%Y"`

In the absence of ~/.bash_profile, this file will be read.

3.1.2.3. ~/.profile

In the absence of ~/.bash_profile and ~/.bash_login, ~/.profile is read. It can hold the same
configurations, which are then also accessible by other shells. Mind that other shells might not understand the
Bash syntax.

3.1.2.4. ~/.bashrc

Today, it is more common to use a non−login shell, for instance when logged in graphically using X terminal
windows. Upon opening such a window, the user does not have to provide a user name or password; no
authentication is done. Bash searches for ~/.bashrc when this happens, so it is referred to in the files read
upon login as well, which means you don't have to enter the same settings in multiple files.

In this user's .bashrc a couple of aliases are defined and variables for specific programs are set after the
system−wide /etc/bashrc is read:

franky ~> cat .bashrc
/home/franky/.bashrc

Source global definitions
if [−f /etc/bashrc]; then
 . /etc/bashrc

fi

shell options

set −o noclobber

my shell variables

export PS1="\[\033[1;44m\]\u \w\[\033[0m\] "
export PATH="$PATH:~/bin:~/scripts"

Bash Guide for Beginners

Chapter 3. The Bash environment 33

my aliases

alias cdrecord='cdrecord −dev 0,0,0 −speed=8'
alias ss='ssh octarine'
alias ll='ls −la'

mozilla fix

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=/usr/lib/mozilla:/usr/lib/mozilla/plugins
MOZ_DIST_BIN=/usr/lib/mozilla
MOZ_PROGRAM=/usr/lib/mozilla/mozilla−bin
export MOZILLA_FIVE_HOME LD_LIBRARY_PATH MOZ_DIST_BIN MOZ_PROGRAM

font fix
alias xt='xterm −bg black −fg white &'

BitchX settings
export IRCNAME="frnk"

THE END
franky ~>

More examples can be found in the Bash package. Remember that sample files might need changes in order to
work in your environment.

Aliases are discussed in Section 3.5.

3.1.2.5. ~/.bash_logout

This file contains specific instructions for the logout procedure. In the example, the terminal window is
cleared upon logout. This is useful for remote connections, which will leave a clean window after closing
them.

franky ~> cat .bash_logout
###
#
Bash_logout file
#
commands to perform from the bash shell at logout time
#
###
clear
franky ~>

3.1.3. Changing shell configuration files

When making changes to any of the above files, users have to either reconnect to the system or source the
altered file for the changes to take effect. By interpreting the script this way, changes are applied to the current
shell session:

Figure 3−1. Different prompts for different users

Bash Guide for Beginners

Chapter 3. The Bash environment 34

Most shell scripts execute in a private environment: variables are not inherited by child processes unless they
are exported by the parent shell. Sourcing a file containing shell commands is a way of applying changes to
your own environment and setting variables in the current shell.

This example also demonstrates the use of different prompt settings by different users. In this case, red means
danger. When you have a green prompt, don't worry too much.

Note that source resourcefile is the same as . resourcefile.

Should you get lost in all these configuration files, and find yourself confronted with settings of which the
origin is not clear, use echo statements, just like for debugging scripts; see Section 2.3.2. You might add lines
like this:

echo "Now executing .bash_profile.."

or like this:

echo "Now setting PS1 in .bashrc:"
export PS1="[some value]"
echo "PS1 is now set to $PS1"

3.2. Variables

3.2.1. Types of variables

As seen in the examples above, shell variables are in uppercase characters by convention. Bash keeps a list of
two types of variables:

Bash Guide for Beginners

Chapter 3. The Bash environment 35

3.2.1.1. Global variables

Global variables or environment variables are available in all shells. The env or printenv commands can be
used to display environment variables. These programs come with the sh−utils package.

Below is a typical output:

franky ~> printenv
CC=gcc
CDPATH=.:~:/usr/local:/usr:/
CFLAGS=−O2 −fomit−frame−pointer
COLORTERM=gnome−terminal
CXXFLAGS=−O2 −fomit−frame−pointer
DISPLAY=:0
DOMAIN=hq.soti.org
e=
TOR=vi
FCEDIT=vi
FIGNORE=.o:~
G_BROKEN_FILENAMES=1
GDK_USE_XFT=1
GDMSESSION=Default
GNOME_DESKTOP_SESSION_ID=Default
GTK_RC_FILES=/etc/gtk/gtkrc:/nethome/franky/.gtkrc−1.2−gnome2
GWMCOLOR=darkgreen
GWMTERM=xterm
HISTFILESIZE=5000
history_control=ignoredups
HISTSIZE=2000
HOME=/nethome/franky
HOSTNAME=octarine.hq.soti.org
INPUTRC=/etc/inputrc
IRCNAME=franky
JAVA_HOME=/usr/java/j2sdk1.4.0
LANG=en_US
LDFLAGS=−s
LD_LIBRARY_PATH=/usr/lib/mozilla:/usr/lib/mozilla/plugins
LESSCHARSET=latin1
LESS=−edfMQ
LESSOPEN=|/usr/bin/lesspipe.sh %s
LEX=flex
LOCAL_MACHINE=octarine
LOGNAME=franky
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=01;35:*.tif=01;35:
MACHINES=octarine
MAILCHECK=60
MAIL=/var/mail/franky
MANPATH=/usr/man:/usr/share/man/:/usr/local/man:/usr/X11R6/man
MEAN_MACHINES=octarine
MOZ_DIST_BIN=/usr/lib/mozilla
MOZILLA_FIVE_HOME=/usr/lib/mozilla
MOZ_PROGRAM=/usr/lib/mozilla/mozilla−bin
MTOOLS_FAT_COMPATIBILITY=1
MYMALLOC=0
NNTPPORT=119
NNTPSERVER=news
NPX_PLUGIN_PATH=/plugin/ns4plugin/:/usr/lib/netscape/plugins
OLDPWD=/nethome/franky
OS=Linux
PAGER=less

Bash Guide for Beginners

Chapter 3. The Bash environment 36

PATH=/nethome/franky/bin.Linux:/nethome/franky/bin:/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:/usr/bin:/usr/sbin:/bin:/sbin:.
PS1=\[\033[1;44m\]franky is in \w\[\033[0m\]
PS2=More input>
PWD=/nethome/franky
SESSION_MANAGER=local/octarine.hq.soti.org:/tmp/.ICE−unix/22106
SHELL=/bin/bash
SHELL_LOGIN=−−login
SHLVL=2
SSH_AGENT_PID=22161
SSH_ASKPASS=/usr/libexec/openssh/gnome−ssh−askpass
SSH_AUTH_SOCK=/tmp/ssh−XXmhQ4fC/agent.22106
START_WM=twm
TERM=xterm
TYPE=type
USERNAME=franky
USER=franky
_=/usr/bin/printenv
VISUAL=vi
WINDOWID=20971661
XAPPLRESDIR=/nethome/franky/app−defaults
XAUTHORITY=/nethome/franky/.Xauthority
XENVIRONMENT=/nethome/franky/.Xdefaults
XFILESEARCHPATH=/usr/X11R6/lib/X11/%L/%T/%N%C%S:/usr/X11R6/lib/X11/%l/%T/%N%C%S:/usr/X11R6/lib/X11/%T/%N%C%S:/usr/X11R6/lib/X11/%L/%T/%N%S:/usr/X11R6/lib/X11/%l/%T/%N%S:/usr/X11R6/lib/X11/%T/%N%S
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
XMODIFIERS=@im=none
XTERMID=
XWINHOME=/usr/X11R6
X=X11R6
YACC=bison −y

3.2.1.2. Local variables

Local variables are only available in the current shell. Using the set built−in command without any options
will display a list of all variables (including environment variables) and functions. The output will be sorted
according to the current locale and displayed in a reusable format.

Below is a diff file made by comparing printenv and set output, after leaving out the functions which are also
displayed by the set command:

franky ~> diff set.sorted printenv.sorted | grep "<" | awk '{ print $2 }'
BASE=/nethome/franky/.Shell/hq.soti.org/octarine.aliases
BASH=/bin/bash
BASH_VERSINFO=([0]="2"
BASH_VERSION='2.05b.0(1)−release'
COLUMNS=80
DIRSTACK=()
DO_FORTUNE=
EUID=504
GROUPS=()
HERE=/home/franky
HISTFILE=/nethome/franky/.bash_history
HOSTTYPE=i686
IFS=$'
LINES=24
MACHTYPE=i686−pc−linux−gnu
OPTERR=1
OPTIND=1
OSTYPE=linux−gnu
PIPESTATUS=([0]="0")

Bash Guide for Beginners

Chapter 3. The Bash environment 37

PPID=10099
PS4='+
PWD_REAL='pwd
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive−comments:monitor
THERE=/home/franky
UID=504

Awk

the GNU Awk programming language is explained in Chapter 6.

3.2.1.3. Variables by content

Apart from dividing variables in local and global variables, we can also divide them in categories according to
the sort of content the variable contains. In this respect, variables come in 4 types:

String variables•
Integer variables•
Constant variables•
Array variables•

We'll discuss these types in Chapter 10. For now, we will work with integer and string values for our
variables.

3.2.2. Creating variables

Variables are case sensitive and capitalized by default. Giving local variables a lowercase name is a
convention which is sometimes applied. However, you are free to use the names you want or to mix cases.
Variables can also contain digits, but a name starting with a digit is not allowed:

prompt> export 1number=1
bash: export: `1number=1': not a valid identifier

To set a variable in the shell, use

VARNAME="value"

Putting spaces around the equal sign will cause errors. It is a good habit to quote content strings when
assigning values to variables: this will reduce the chance that you make errors.

Some examples using upper and lower cases, numbers and spaces:

franky ~> MYVAR1="2"

franky ~7gt; echo $MYVAR1
2

franky ~> first_name="Franky"

franky ~> echo $first_name
Franky

franky ~> full_name="Franky M. Singh"

Bash Guide for Beginners

Chapter 3. The Bash environment 38

franky ~> echo $full_name
Franky M. Singh

franky ~> MYVAR−2="2"
bash: MYVAR−2=2: command not found

franky ~> MYVAR1 ="2"
bash: MYVAR1: command not found

franky ~> MYVAR1= "2"
bash: 2: command not found

franky ~> unset MYVAR1 first_name full_name

franky ~> echo $MYVAR1 $first_name $full_name
<−−no output−−>

franky ~>

3.2.3. Exporting variables

A variable created like the ones in the example above is only available to the current shell. It is a local
variable: child processes of the current shell will not be aware of this variable. In order to pass variables to a
subshell, we need to export them using the export built−in command. Variables that are exported are referred
to as environment variables. Setting and exporting is usually done in one step:

export VARNAME="value"

A subshell can change variables it inherited from the parent, but the changes made by the child don't affect the
parent. This is demonstrated in the example:

franky ~> full_name="Franky M. Singh"

franky ~> bash

franky ~> echo $full_name

franky ~> exit

franky ~> export full_name

franky ~> bash

franky ~> echo $full_name
Franky M. Singh

franky ~> export full_name="Charles the Great"

franky ~> echo $full_name
Charles the Great

franky ~> exit

franky ~> echo $full_name
Franky M. Singh

franky ~>

Bash Guide for Beginners

Chapter 3. The Bash environment 39

When first trying to read the value of full_name in a subshell, it is not there (echo shows a null string). The
subshell quits, and full_name is exported in the parent − a variable can be exported after it has been
assigned a value. Then a new subshell is started, in which the variable exported from the parent is visible. The
variable is changed to hold another name, but the value for this variable in the parent stays the same.

3.2.4. Reserved variables

3.2.4.1. Bourne shell reserved variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases, Bash assigns a default
value to the variable. The table below gives an overview of these plain shell variables:

Table 3−1. Reserved Bourne shell variables

Variable name Definition

CDPATH
A colon−separated list of directories used as a search path for the cd built−in
command.

HOME
The current user's home directory; the default for the cd built−in. The value of this
variable is also used by tilde expansion.

IFS
A list of characters that separate fields; used when the shell splits words as part of
expansion.

MAIL
If this parameter is set to a file name and the MAILPATH variable is not set, Bash
informs the user of the arrival of mail in the specified file.

MAILPATH
A colon−separated list of file names which the shell periodically checks for new
mail.

OPTARG The value of the last option argument processed by the getopts built−in.

OPTIND The index of the last option argument processed by the getopts built−in.

PATH A colon−separated list of directories in which the shell looks for commands.

PS1 The primary prompt string. The default value is "'\s−\v\$ '".

PS2 The secondary prompt string. The default value is "'> '".

3.2.4.2. Bash reserved variables

These variables are set or used by Bash, but other shells do not normally treat them specially.

Table 3−2. Reserved Bash variables

Variable name Definition

auto_resume This variable controls how the shell interacts with the user and job control.

BASH The full pathname used to execute the current instance of Bash.

BASH_ENV
If this variable is set when Bash is invoked to execute a shell script, its value is
expanded and used as the name of a startup file to read before executing the script.

BASH_VERSION The version number of the current instance of Bash.

BASH_VERSINFO A read−only array variable whose members hold version information for this

Bash Guide for Beginners

Chapter 3. The Bash environment 40

instance of Bash.

COLUMNS
Used by the select built−in to determine the terminal width when printing selection
lists. Automatically set upon receipt of a SIGWINCH signal.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor
position.

COMP_LINE The current command line.

COMP_POINT
The index of the current cursor position relative to the beginning of the current
command.

COMP_WORDS An array variable consisting of the individual words in the current command line.

COMPREPLY
An array variable from which Bash reads the possible completions generated by a
shell function invoked by the programmable completion facility.

DIRSTACK An array variable containing the current contents of the directory stack.

EUID The numeric effective user ID of the current user.

FCEDIT The editor used as a default by the −e option to the fc built−in command.

FIGNORE A colon−separated list of suffixes to ignore when performing file name completion.

FUNCNAME The name of any currently−executing shell function.

GLOBIGNORE
A colon−separated list of patterns defining the set of file names to be ignored by file
name expansion.

GROUPS
An array variable containing the list of groups of which the current user is a
member.

histchars
Up to three characters which control history expansion, quick substitution, and
tokenization.

HISTCMD The history number, or index in the history list, of the current command.

HISTCONTROL Defines whether a command is added to the history file.

HISTFILE
The name of the file to which the command history is saved. The default value is
~/.bash_history.

HISTFILESIZE The maximum number of lines contained in the history file, defaults to 500.

HISTIGNORE
A colon−separated list of patterns used to decide which command lines should be
saved in the history list.

HISTSIZE The maximum number of commands to remember on the history list, default is 500.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be read
when the shell needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine Bash is running on.

IGNOREEOF Controls the action of the shell on receipt of an EOF character as the sole input.

INPUTRC
The name of the Readline initialization file, overriding the default
/etc/inputrc.

LANG
Used to determine the locale category for any category not specifically selected with
a variable starting with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a
locale category.

LC_COLLATE
This variable determines the collation order used when sorting the results of file
name expansion, and determines the behavior of range expressions, equivalence
classes, and collating sequences within file name expansion and pattern matching.

Bash Guide for Beginners

Chapter 3. The Bash environment 41

LC_CTYPE
This variable determines the interpretation of characters and the behavior of
character classes within file name expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double−quoted strings preceded
by a "$" sign.

LC_NUMERIC This variable determines the locale category used for number formatting.

LINENO The line number in the script or shell function currently executing.

LINES
Used by the select built−in to determine the column length for printing selection
lists.

MACHTYPE
A string that fully describes the system type on which Bash is executing, in the
standard GNU CPU−COMPANY−SYSTEM format.

MAILCHECK
How often (in seconds) that the shell should check for mail in the files specified in
the MAILPATH or MAIL variables.

OLDPWD The previous working directory as set by the cd built−in.

OPTERR If set to the value 1, Bash displays error messages generated by the getopts built−in.

OSTYPE A string describing the operating system Bash is running on.

PIPESTATUS
An array variable containing a list of exit status values from the processes in the
most recently executed foreground pipeline (which may contain only a single
command).

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters POSIX
mode.

PPID The process ID of the shell's parent process.

PROMPT_COMMAND
If set, the value is interpreted as a command to execute before the printing of each
primary prompt (PS1).

PS3
The value of this variable is used as the prompt for the select command. Defaults to
"'#? '"

PS4
The value is the prompt printed before the command line is echoed when the −x
option is set; defaults to "'+ '".

PWD The current working directory as set by the cd built−in command.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is
generated. Assigning a value to this variable seeds the random number generator.

REPLY The default variable for the read built−in.

SECONDS This variable expands to the number of seconds since the shell was started.

SHELLOPTS A colon−separated list of enabled shell options.

SHLVL Incremented by one each time a new instance of Bash is started.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing
information for pipelines prefixed with the time reserved word should be displayed.

TMOUT

If set to a value greater than zero, TMOUT is treated as the default timeout for the
read built−in. In an interative shell, the value is interpreted as the number of
seconds to wait for input after issuing the primary prompt when the shell is
interactive. Bash terminates after that number of seconds if input does not arrive.

UID The numeric, real user ID of the current user.

Check the Bash man, info or doc pages for extended information. Some variables are read−only, some are set
automatically and some lose their meaning when set to a different value than the default.

Bash Guide for Beginners

Chapter 3. The Bash environment 42

3.2.5. Special parameters

The shell treats several parameters specially. These parameters may only be referenced; assignment to them is
not allowed.

Table 3−3. Special bash variables

Character Definition

$*
Expands to the positional parameters, starting from one. When the expansion occurs
within double quotes, it expands to a single word with the value of each parameter
separated by the first character of the IFS special variable.

$@
Expands to the positional parameters, starting from one. When the expansion occurs
within double quotes, each parameter expands to a separate word.

$# Expands to the number of positional parameters in decimal.

$? Expands to the exit status of the most recently executed foreground pipeline.

$−
A hyphen expands to the current option flags as specified upon invocation, by the set
built−in command, or those set by the shell itself (such as the −i).

$$ Expands to the process ID of the shell.

$!
Expands to the process ID of the most recently executed background (asynchronous)
command.

$0 Expands to the name of the shell or shell script.

$_

The underscore variable is set at shell startup and contains the absolute file name of the
shell or script being executed as passed in the argument list. Subsequently, it expands to
the last argument to the previous command, after expansion. It is also set to the full
pathname of each command executed and placed in the environment exported to that
command. When checking mail, this parameter holds the name of the mail file.

The positional parameters are the words following the name of a shell script. They are put into the variables
$1, $2, $3 and so on. As long as needed, variables are added to an internal array. $# holds the total number
of parameters, as is demonstrated with this simple script:

#!/bin/bash

positional.sh
This script reads 3 positional parameters and prints them out.

POSPAR1="$1"
POSPAR2="$2"
POSPAR3="$3"

echo "$1 is the first positional parameter, \$1."
echo "$2 is the second positional parameter, \$2."
echo "$3 is the third positional parameter, \$3."
echo
echo "The total number of positional parameters is $#."

Upon execution one could give any numbers of arguments:

franky ~> positional.sh one two three four five
one is the first positional parameter, $1.

Bash Guide for Beginners

Chapter 3. The Bash environment 43

two is the second positional parameter, $2.
three is the third positional parameter, $3.

The total number of positional parameters is 5.

franky ~> positional.sh one two
one is the first positional parameter, $1.
two is the second positional parameter, $2.
 is the third positional parameter, $3.

The total number of positional parameters is 2.

More on evaluating these parameters is in Chapter 7 and Section 9.7.

Some examples on the other special parameters:

franky ~> grep dictionary /usr/share/dict/words
dictionary

franky ~> echo $_
/usr/share/dict/words

franky ~> echo $$
10662

franky ~> mozilla &
[1] 11064

franky ~> echo $!
11064

franky ~> echo $0
bash

franky ~> ls doesnotexist
ls: doesnotexist: No such file or directory

franky ~> echo $?
0

franky ~> echo $?
1

franky ~>

User franky starts entering the idcommand, which results in the assignment of the _ variable. The process ID
of his shell is 10662. After putting a job in the background, the ! holds the process ID of the backgrounded
job. The shell running is bash. When a mistake is made, ? holds an exit code different from 0 (zero).

3.2.6. Script recycling with variables

Apart from making the script more readable, variables will also enable you to faster apply a script in another
environment or for another purpose. Consider the following example, a very simple script that makes a
backup of franky's home directory to a remote server:

#!/bin/bash

Bash Guide for Beginners

Chapter 3. The Bash environment 44

This script makes a backup of my home directory.

cd /home

This creates the archive
tar cf /var/tmp/home_franky.tar franky > /dev/null 2>&1

First remove the old bzip2 file. Redirect errors because this generates some if the archive
does not exist. Then create a new compressed file.
rm /var/tmp/home_franky.tar.bz2 2> /dev/null
bzip2 /var/tmp/home_franky.tar

Copy the file to another host − we have ssh keys for making this work without intervention.
scp /var/tmp/home_franky.tar.bz2 bordeaux:/opt/backup/franky > /dev/null 2>&1

Create a timestamp in a logfile.
date > /home/franky/log/home_backup.log
echo backup succeeded > /home/franky/log/home_backup.log

First of all, you are more likely to make errors if you name files and directories manually each time you need
them. Secondly, suppose franky wants to give this script to carol, then carol will have to do quite some editing
before she can use the script to back up her home directory. The same is true if franky wants to use this script
for backing up other directories. For easy recycling, make all files, directories, usernames, servernames
etcetera variable. Thus, you only need to edit a value once, without having to go through the entire script to
check where a parameter occurs. This is an example:

#!/bin/bash

This script makes a backup of my home directory.

Change the values of the variables to make the script work for you:
BACKUPDIR=/home
BACKUPFILES=franky
TARFILE=/var/tmp/home_franky.tar
BZIPFILE=/var/tmp/home_franky.tar.bz2
SERVER=bordeaux
REMOTEDIR=/opt/backup/franky
LOGFILE=/home/franky/log/home_backup.log

cd $BACKUPDIR

This creates the archive
tar cf $TARFILE $BACKUPFILES > /dev/null 2>&1

First remove the old bzip2 file. Redirect errors because this generates some if the archive
does not exist. Then create a new compressed file.
rm $BZIPFILE 2> /dev/null
bzip2 $TARFILE

Copy the file to another host − we have ssh keys for making this work without intervention.
scp $BZIPFILE $SERVER:$REMOTEDIR > /dev/null 2>&1

Create a timestamp in a logfile.
date > $LOGFILE
echo backup succeeded > $LOGFILE

Large directories and low bandwidth

Bash Guide for Beginners

Chapter 3. The Bash environment 45

The above is purely an example that everybody can understand, using a small directory and a host on the
same subnet. Depending on your bandwidth, the size of the directory and the location of the remote
server, it can take an awful lot of time to make backups using this mechanism. For larger directories and
lower bandwidth, use rsync to keep the directories at both ends synchronized.

3.3. Quoting characters

3.3.1. Why?

A lot of keys have special meanings in some context or other. Quoting is used to remove the special meaning
of characters or words: quotes can disable special treatment for special characters, they can prevent reserved
words from being recognized as such and they can disable parameter expansion.

3.3.2. Escape characters

Escape characters are used to remove the special meaning from a single character. A non−quoted backslash, \,
is used as an escape character in Bash. It preserves the literal value of the next character that follows, with the
exception of newline. If a newline character appears immediately after the backslash, it marks the continuation
of a line when it is longer that the width of the terminal; the backslash is removed from the input stream and
effectively ignored.

franky ~> date=20021226

franky ~> echo $date
20021226

franky ~> echo \$date
$date

In this example, the variable date is created and set to hold a value. The first echo displays the value of the
variable, but for the second, the dollar sign is escaped.

3.3.3. Single quotes

Single quotes ('') are used to preserve the literal value of each character enclosed within the quotes. A single
quote may not occur between single quotes, even when preceded by a backslash.

We continue with the previous example:

franky ~> echo '$date'
$date

3.3.4. Double quotes

Using double quotes the literal value of all characters enclosed is preserved, except for the dollar sign, the
backticks (backward single quotes, ``) and the backslash.

Bash Guide for Beginners

Chapter 3. The Bash environment 46

The dollar sign and the backticks retain their special meaning within the double quotes.

The backslash retains its meaning only when followed by dollar, backtick, double quote, backslash or
newline. Within double quotes, the backslashes are removed from the input stream when followed by one of
these characters. Backslashes preceding characters that don't have a special meaning are left unmodified for
processing by the shell interpreter.

A double quote may be quoted within double quotes by preceding it with a backslash.

franky ~> echo "$date"
20021226

franky ~> echo "`date`"
Sun Apr 20 11:22:06 CEST 2003

franky ~> echo "I'd say: \"Go for it!\""
I'd say: "Go for it!"

franky ~> echo "\"
More input>"

franky ~> echo "\\"
\

3.3.5. ANSI−C quoting

Words in the form "$'STRING'" are treated in a special way. The word expands to a string, with
backslash−escaped characters replaced as specified by the ANSI−C standard. Backslash escape sequences can
be found in the Bash documentation.

3.3.6. Locales

A double−quoted string preceded by a dollar sign will cause the string to be translated according to the current
locale. If the current locale is "C" or "POSIX", the dollar sign is ignored. If the string is translated and
replaced, the replacement is double−quoted.

3.4. Shell expansion

3.4.1. General

After the command has been split into tokens (see Section 1.4.1.1), these tokens or words are expanded or
resolved. There are eight kinds of expansion performed, which we will discuss in the next sections, in the
order that they are expanded.

After all expansions, quote removal is performed.

Bash Guide for Beginners

Chapter 3. The Bash environment 47

3.4.2. Brace expansion

Brace expansion is a mechanism by which arbitrary strings may be generated. Patterns to be brace−expanded
take the form of an optional PREAMBLE, followed by a series of comma−separated strings between a pair of
braces, followed by an optional POSTSCRIPT. The preamble is prefixed to each string contained within the
braces, and the postscript is then appended to each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is
preserved:

franky ~> echo sp{el,il,al}l
spell spill spall

Brace expansion is performed before any other expansions, and any characters special to other expansions are
preserved in the result. It is strictly textual. Bash does not apply any syntactic interpretation to the context of
the expansion or the text between the braces. To avoid conflicts with parameter expansion, the string "${" is
not considered eligible for brace expansion.

A correctly−formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma. Any incorrectly formed brace expansion is left unchanged.

3.4.3. Tilde expansion

If a word begins with an unquoted tilde character ("~"), all of the characters up to the first unquoted slash (or
all characters, if there is no unquoted slash) are considered a tilde−prefix. If none of the characters in the
tilde−prefix are quoted, the characters in the tilde−prefix following the tilde are treated as a possible login
name. If this login name is the null string, the tilde is replaced with the value of the HOME shell variable. If
HOME is unset, the home directory of the user executing the shell is substituted instead. Otherwise, the
tilde−prefix is replaced with the home directory associated with the specified login name.

If the tilde−prefix is "~+", the value of the shell variable PWD replaces the tilde−prefix. If the tilde−prefix is
"~−", the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following the tilde in the tilde−prefix consist of a number N, optionally prefixed by a "+" or a
"−", the tilde−prefix is replaced with the corresponding element from the directory stack, as it would be
displayed by the dirs built−in invoked with the characters following tilde in the tilde−prefix as an argument.
If the tilde−prefix, without the tilde, consists of a number without a leading "+" or "−", "+" is assumed.

If the login name is invalid, or the tilde expansion fails, the word is left unchanged.

Each variable assignment is checked for unquoted tilde−prefixes immediately following a ":" or "=". In these
cases, tilde expansion is also performed. Consequently, one may use file names with tildes in assignments to
PATH, MAILPATH, and CDPATH, and the shell assigns the expanded value.

Example:

franky ~> export PATH="$PATH:~/testdir"

~/testdir will be expanded to $HOME/testdir, so if $HOME is /var/home/franky, the directory
/var/home/franky/testdir will be added to the content of the PATH variable.

Bash Guide for Beginners

Chapter 3. The Bash environment 48

3.4.4. Shell parameter and variable expansion

The "$" character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to protect
the variable to be expanded from characters immediately following it which could be interpreted as part of the
name.

When braces are used, the matching ending brace is the first "}" not escaped by a backslash or within a quoted
string, and not within an embedded arithmetic expansion, command substitution, or parameter expansion.

The basic form of parameter expansion is "${PARAMETER}". The value of "PARAMETER" is substituted.
The braces are required when "PARAMETER" is a positional parameter with more than one digit, or when
"PARAMETER" is followed by a character that is not to be interpreted as part of its name.

If the first character of "PARAMETER" is an exclamation point, Bash uses the value of the variable formed
from the rest of "PARAMETER" as the name of the variable; this variable is then expanded and that value is
used in the rest of the substitution, rather than the value of "PARAMETER" itself. This is known as indirect
expansion.

You are certainly familiar with straight parameter expansion, since it happens all the time, even in the
simplest of cases, such as the one above or the following:

franky ~> echo $SHELL
/bin/bash

The following is an example of indirect expansion:

franky ~> echo ${!N*}
NNTPPORT NNTPSERVER NPX_PLUGIN_PATH

Note that this is not the same as echo $N*.

The following construct allows for creation of the named variable if it does not yet exist:

${VAR:=value}

Example:

franky ~> echo $FRANKY

franky ~> echo ${FRANKY:=Franky}
Franky

Special parameters, among others the positional parameters, may not be assigned this way, however.

We will further discuss the use of the curly braces for treatment of variables in Chapter 10. More information
can also be found in the Bash info pages.

Bash Guide for Beginners

Chapter 3. The Bash environment 49

3.4.5. Command substitution

Command substitution allows the output of a command to replace the command itself. Command substitution
occurs when a command is enclosed like this:

$(command)

or like this using backticks:

`command`

Bash performs the expansion by executing COMMAND and replacing the command substitution with the
standard output of the command, with any trailing newlines deleted. Embedded newlines are not deleted, but
they may be removed during word splitting.

franky ~> echo `date`
Thu Feb 6 10:06:20 CET 2003

When the old−style backquoted form of substitution is used, backslash retains its literal meaning except when
followed by "$", "`", or "\". The first backticks not preceded by a backslash terminates the command
substitution. When using the "$(COMMAND)" form, all characters between the parentheses make up the
command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape the inner backticks
with backslashes.

If the substitution appears within double quotes, word splitting and file name expansion are not performed on
the results.

3.4.6. Arithmetic expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result. The
format for arithmetic expansion is:

$((EXPRESSION))

The expression is treated as if it were within double quotes, but a double quote inside the parentheses is not
treated specially. All tokens in the expression undergo parameter expansion, command substitution, and quote
removal. Arithmetic substitutions may be nested.

Evaluation of arithmetic expressions is done in fixed−width integers with no check for overflow − although
division by zero is trapped and recognized as an error. The operators are the same as in the C programming
language. In order of decreasing precedence, the list looks like this:

Table 3−4. Arithmetic operators

Operator Meaning

VAR++ and VAR−− variable post−increment and post−decrement

++VAR and −−VAR variable pre−increment and pre−decrement

Bash Guide for Beginners

Chapter 3. The Bash environment 50

− and + unary minus and plus

! and ~ logical and bitwise negation

** exponentiation

*, / and % multiplication, division, remainder

+ and − addition, subtraction

<< and >> left and right bitwise shifts

<=, >=, < and > comparison operators

== and !== equality and inequality

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

expr ? expr : expr conditional evaluation

=, *=, /=, %=, +=, −=, <<=, >>=, &=, ^= and |= assignments

, separator between expressions

Shell variables are allowed as operands; parameter expansion is performed before the expression is evaluated.
Within an expression, shell variables may also be referenced by name without using the parameter expansion
syntax. The value of a variable is evaluated as an arithmetic expression when it is referenced. A shell variable
need not have its integer attribute turned on to be used in an expression.

Constants with a leading 0 (zero) are interpreted as octal numbers. A leading "0x" or "0X" denotes
hexadecimal. Otherwise, numbers take the form "[BASE'#']N", where "BASE" is a decimal number between
2 and 64 representing the arithmetic base, and N is a number in that base. If "BASE'#'" is omitted, then base
10 is used. The digits greater than 9 are represented by the lowercase letters, the uppercase letters, "@", and
"_", in that order. If "BASE" is less than or equal to 36, lowercase and uppercase letters may be used
interchangably to represent numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub−expressions in parentheses are evaluated first and may
override the precedence rules above.

Wherever possible, Bash users should try to use the syntax with angular brackets:

$[EXPRESSION]

However, this will only calculate the result of EXPRESSION, and do no tests:

franky ~> echo $[365*24]
8760

See Section 7.1.2.2, among others, for practical examples in scripts.

Bash Guide for Beginners

Chapter 3. The Bash environment 51

3.4.7. Process substitution

Process substitution is supported on systems that support named pipes (FIFOs) or the /dev/fd method of
naming open files. It takes the form of

<(LIST)

or

>(LIST)

The process LIST is run with its input or output connected to a FIFO or some file in /dev/fd. The name of
this file is passed as an argument to the current command as the result of the expansion. If the ">(LIST)" form
is used, writing to the file will provide input for LIST. If the "<(LIST)" form is used, the file passed as an
argument should be read to obtain the output of LIST. Note that no space may appear between the < or >
signs and the left parenthesis, otherwise the construct would be interpreted as a redirection.

When available, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

More information in Section 8.2.3.

3.4.8. Word splitting

The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that did
not occur within double quotes for word splitting.

The shell treats each character of $IFS as a delimiter, and splits the results of the other expansions into words
on these characters. If IF is unset, or its value is exactly "'<space><tab><newline>'", the default, then any
sequence of IFS characters serves to delimit words. If IFS has a value other than the default, then sequences
of the whitespace characters "space" and "Tab" are ignored at the beginning and end of the word, as long as
the whitespace character is in the value of IFS (an IFS whitespace character). Any character in IFS that is
not IFS whitespace, along with any adjacent IF whitespace characters, delimits a field. A sequence of IFS
whitespace characters is also treated as a delimiter. If the value of IFS is null, no word splitting occurs.

Explicit null arguments ("""" or "''") are retained. Unquoted implicit null arguments, resulting from the
expansion of parameters that have no values, are removed. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Expansion and word splitting

If no expansion occurs, no splitting is performed.

3.4.9. File name expansion

After word splitting, unless the −f option has been set (see Section 2.3.2), Bash scans each word for the
characters "*", "?", and "[". If one of these characters appears, then the word is regarded as a PATTERN, and
replaced with an alphabetically sorted list of file names matching the pattern. If no matching file names are
found, and the shell option nullglob is disabled, the word is left unchanged. If the nullglob option is
set, and no matches are found, the word is removed. If the shell option nocaseglob is enabled, the match is

Bash Guide for Beginners

Chapter 3. The Bash environment 52

performed without regard to the case of alphabetic characters.

When a pattern is used for file name generation, the character "." at the start of a file name or immediately
following a slash must be matched explicitly, unless the shell option dotglob is set. When matching a file
name, the slash character must always be matched explicitly. In other cases, the "." character is not treated
specially.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching a pattern. If
GLOBIGNORE is set, each matching file name that also matches one of the patterns in GLOBIGNORE is
removed from the list of matches. The file names . and .. are always ignored, even when GLOBIGNORE is
set. However, setting GLOBIGNORE has the effect of enabling the dotglob shell option, so all other file
names beginning with a "." will match. To get the old behavior of ignoring file names beginning with a ".",
make ".*" one of the patterns in GLOBIGNORE. The dotglob option is disabled when GLOBIGNORE is
unset.

3.5. Aliases

3.5.1. What are aliases?

An alias allows a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset with the alias and unalias built−in commands.
Issue the alias without options to display a list of aliases known to the current shell.

franky: ~> alias
alias ..='cd ..'
alias ...='cd ../..'
alias='cd ../../..'
alias PAGER='less −r'
alias Txterm='export TERM=xterm'
alias XARGS='xargs −r'
alias cdrecord='cdrecord −dev 0,0,0 −speed=8'
alias e='vi'
alias egrep='grep −E'
alias ewformat='fdformat −n /dev/fd0u1743; ewfsck'
alias fgrep='grep −F'
alias ftp='ncftp −d15'
alias h='history 10'
alias fformat='fdformat /dev/fd0H1440'
alias j='jobs −l'
alias ksane='setterm −reset'
alias ls='ls −F −−color=auto'
alias m='less'
alias md='mkdir'
alias od='od −Ax −ta −txC'
alias p='pstree −p'
alias ping='ping −vc1'
alias sb='ssh blubber'
alias sl='ls'
alias ss='ssh octarine'
alias sss='ssh −C server1.us.soti.org'
alias sssu='ssh −C −l root server1.us.soti.org'
alias tar='gtar'
alias tmp='cd /tmp'

Bash Guide for Beginners

Chapter 3. The Bash environment 53

alias unaliasall='unalias −a'
alias vi='eval `resize`;vi'
alias vt100='export TERM=vt100'
alias which='type'
alias xt='xterm −bg black −fg white &'

franky ~>

Aliases are useful for specifying the default version of a command that exists in several versions on your
system, or to specify default options to a command. Another use for aliases is for correcting incorrect spelling.

The first word of each simple command, if unquoted, is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell input,
including shell metacharacters, with the exception that the alias name may not contain "=". The first word of
the replacement text is tested for aliases, but a word that is identical to an alias being expanded is not
expanded a second time. This means that one may alias ls to ls −F, for instance, and Bash will not try to
recursively expand the replacement text. If the last character of the alias value is a space or tab character, then
the next command word following the alias is also checked for alias expansion.

Aliases are not expanded when the shell is not interactive, unless the expand_aliases option is set using
the shopt shell built−in.

3.5.2. Creating and removing aliases

Aliases are created using the alias shell built−in. For permanent use, enter the alias in one of your shell
initialization files; if you just enter the alias on the command line, it is only recognized within the current
shell.

franky ~> alias dh='df −h'

franky ~> dh
Filesystem Size Used Avail Use% Mounted on
/dev/hda7 1.3G 272M 1018M 22% /
/dev/hda1 121M 9.4M 105M 9% /boot
/dev/hda2 13G 8.7G 3.7G 70% /home
/dev/hda3 13G 5.3G 7.1G 43% /opt
none 243M 0 243M 0% /dev/shm
/dev/hda6 3.9G 3.2G 572M 85% /usr
/dev/hda5 5.2G 4.3G 725M 86% /var

franky ~> unalias dh

franky ~> dh
bash: dh: command not found

franky ~>

Bash always reads at least one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input is read. The
commands following the alias definition on that line are not affected by the new alias. This behavior is also an
issue when functions are executed. Aliases are expanded when a function definition is read, not when the
function is executed, because a function definition is itself a compound command. As a consequence, aliases
defined in a function are not available until after that function is executed. To be safe, always put alias

Bash Guide for Beginners

Chapter 3. The Bash environment 54

definitions on a separate line, and do not use alias in compound commands.

Aliases are not inherited by child processes. Bourne shell (sh) does not recognize aliases.

More about functions is in Chapter 11.

Functions are faster

Aliases are looked up after functions and thus resolving is slower. While aliases are easier to understand,
shell functions are preferred over aliases for almost every purpose.

3.6. More Bash options

3.6.1. Displaying options

We already discussed a couple of Bash options that are useful for debugging your scripts. In this section, we
will take a more in−depth view of the Bash options.

Use the −o option to set to display all shell options:

willy:~> set −o
allexport off
braceexpand on
emacs on
errexit off
hashall on
histexpand on
history on
ignoreeof off
interactive−comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
posix off
privileged off
verbose off
vi off
xtrace off

See the Bash Info pages, section Shell Built−in Commands−>The Set Built−in for a description of each
option. A lot of options have one−character shorthands: the xtrace option, for instance, is equal to
specifying set −x.

Bash Guide for Beginners

Chapter 3. The Bash environment 55

3.6.2. Changing options

Shell options can either be set different from the default upon calling the shell, or be set during shell
operation. They may also be included in the shell resource configuration files.

The following command executes a script in POSIX−compatible mode:

willy:~/scripts> bash −−posix script.sh

For changing the current environment temporarily, or for use in a script, we would rather use set. Use −
(dash) for enabling an option, + for disabling:

willy:~/test> set −o noclobber

willy:~/test> touch test

willy:~/test> date > test
bash: test: cannot overwrite existing file

willy:~/test> set +o noclobber

willy:~/test> date > test

The above example demonstrates the noclobber option, which prevents existing files from being
overwritten by redirection operations. The same goes for one−character options, for instance −u, which will
treat unset variables as an error when set, and exits a non−interactive shell upon encountering such errors:

willy:~> echo $VAR

willy:~> set −u

willy:~> echo $VAR
bash: VAR: unbound variable

This option is also useful for detecting incorrect content assignment to variables: the same error will also
occur, for instance, when assigning a character string to a variable that was declared explicitly as one holding
only integer values.

One last example follows, demonstrating the noglob option, which prevents special characters from being
expanded:

willy:~/testdir> set −o noglob

willy:~/testdir> touch *

willy:~/testdir> ls −l *
−rw−rw−r−− 1 willy willy 0 Feb 27 13:37 *

Bash Guide for Beginners

Chapter 3. The Bash environment 56

3.7. Summary

The Bash environment can be configured globally and on a per user basis. Various configuration files are used
to fine−tune the behavior of the shell.

These files contain shell options, settings for variables, function definitions and various other building blocks
for creating ourselves a cosy environment.

Except for the reserved Bourne shell, Bash and special parameters, variable names can be chosen more or less
freely.

Because a lot of characters have double or even triple meanings, depending on the environment, Bash uses a
system of quoting to take away special meaning from one or multiple characters when special treatment is not
wanted.

Bash uses various methods of expanding command line entries in order to determine which commands to
execute.

3.8. Exercises

For this exercise, you will need to read the useradd man pages, because we are going to use the /etc/skel
directory to hold default shell configuration files, which are copied to the home directory of each newly added
user.

First we will do some general exercises on setting and displaying variables.

Create 3 variables, VAR1, VAR2 and VAR3; initialize them to hold the values "thirteen", "13" and
"Happy Birthday" respectively.

1.

Display the values of all three variables.2.
Are these local or global variables?3.
Remove VAR3.4.
Can you see the two remaining variables in a new terminal window?5.
Edit /etc/profile so that all users are greeted upon login (test this).6.
For the root account, set the prompt to something like "Danger!! root is doing stuff in \w", preferably
in a bright color such as red or pink or in reverse video mode.

7.

Make sure that newly created users also get a nice personalized prompt which informs them on which
system in which directory they are working. Test your changes by adding a new user and logging in
as that user.

8.

Write a script in which you assign two integer values to two variables. The script should calculate the
surface of a rectangle which has these proportions. It should be aired with comments and generate
elegant output.

9.

Don't forget to chmod your scripts!

Bash Guide for Beginners

Chapter 3. The Bash environment 57

Chapter 4. Regular expressions

In this chapter we discuss:

Using regular expressions♦
Regular expression metacharacters♦
Finding patterns in files or output♦
Character ranges and classes in Bash♦

4.1. Regular expressions

4.1.1. What are regular expressions?

A regular expression is a pattern that describes a set of strings. Regular expressions are constructed
analogously to arithmetic expressions by using various operators to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most characters,
including all letters and digits, are regular expressions that match themselves. Any metacharacter with special
meaning may be quoted by preceding it with a backslash.

4.1.2. Regular expression metacharacters

A regular expression may be followed by one of several repetition operators (metacharacters):

Table 4−1. Regular expression operators

Operator Effect

. Matches any single character.

? The preceding item is optional and will be matched, at most, once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{N} The preceding item is matched exactly N times.

{N,} The preceding item is matched N or more times.

{N,M} The preceding item is matched at least N times, but not more than M times.

− represents the range if it's not first or last in a list or the ending point of a range in a list.

^
Matches the empty string at the beginning of a line; also represents the characters not in the
range of a list.

$ Matches the empty string at the end of a line.

\b Matches the empty string at the edge of a word.

\B Matches the empty string provided it's not at the edge of a word.

\< Match the empty string at the beginning of word.

\> Match the empty string at the end of word.

Chapter 4. Regular expressions 58

Two regular expressions may be concatenated; the resulting regular expression matches any string formed by
concatenating two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator "|"; the resulting regular expression matches any
string matching either subexpression.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A whole
subexpression may be enclosed in parentheses to override these precedence rules.

4.1.3. Basic versus extended regular expressions

In basic regular expressions the metacharacters "?", "+", "{", "|", "(", and ")" lose their special meaning;
instead use the backslashed versions "\?", "\+", "\{", "\|", "\(", and "\)".

Check in your system documentation whether commands using regular expressions support extended
expressions.

4.2. Examples using grep

4.2.1. What is grep?

grep searches the input files for lines containing a match to a given pattern list. When it finds a match in a
line, it copies the line to standard output (by default), or whatever other sort of output you have requested with
options.

Though grep expects to do the matching on text, it has no limits on input line length other than available
memory, and it can match arbitrary characters within a line. If the final byte of an input file is not a newline,
grep silently supplies one. Since newline is also a separator for the list of patterns, there is no way to match
newline characters in a text.

Some examples:

cathy ~> grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin

cathy ~> grep −n root /etc/passwd
1:root:x:0:0:root:/root:/bin/bash
12:operator:x:11:0:operator:/root:/sbin/nologin

cathy ~> grep −v bash /etc/passwd | grep −v nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
news:x:9:13:news:/var/spool/news:
mailnull:x:47:47::/var/spool/mqueue:/dev/null
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
nscd:x:28:28:NSCD Daemon:/:/bin/false
named:x:25:25:Named:/var/named:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null

Bash Guide for Beginners

Chapter 4. Regular expressions 59

ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false
apache:x:48:48:Apache:/var/www:/bin/false

cathy ~> grep −c false /etc/passwd
7

cathy ~> grep −i ps ~/.bash* | grep −v history
/home/cathy/.bashrc:PS1="\[\033[1;44m\]$USER is in \w\[\033[0m\] "

With the first command, user cathy displays the lines from /etc/passwd containing the string root.

Then she displays the line numbers containing this search string.

With the third command she checks which users are not using bash, but accounts with the nologin shell are
not displayed.

Then she counts the number of accounts that have /bin/false as the shell.

The last command displays the lines from all the files in her home directory starting with ~/.bash,
excluding matches containing history, so as to exclude matches from ~/.bash_history which might
contain the same string, in upper or lower cases.

Now let's see what else we can do with grep, using regular expressions.

4.2.2. Grep and regular expressions

If you are not on Linux

We use GNU grep in these examples, which supports extended regular expressions. GNU grep is the
default on Linux systems. If you are working on proprietary systems, check with the −V option which
version you are using. GNU grep can be downloaded from http://gnu.org/directory/.

4.2.2.1. Line and word anchors

From the previous example, we now exclusively want to display lines starting with the string "root":

cathy ~> grep ^root /etc/passwd
root:x:0:0:root:/root:/bin/bash

If we want to see which accounts have no shell assigned whatsoever, we search for lines ending in ":":

cathy ~> grep :$ /etc/passwd
news:x:9:13:news:/var/spool/news:

To check that PATH is exported in ~/.bashrc, first select "export" lines and then search for lines starting
with the string "PATH", so as not to display MANPATH and other possible paths:

cathy ~> grep export ~/.bashrc | grep '\<PATH'
 export PATH="/bin:/usr/lib/mh:/lib:/usr/bin:/usr/local/bin:/usr/ucb:/usr/dbin:$PATH"

Similarly, \> matches the end of a word.

Bash Guide for Beginners

Chapter 4. Regular expressions 60

http://gnu.org/directory/

If you want to find a string that is a separate word (enclosed by spaces), it is better use the −w, as in this
example where we are displaying information for the root partition:

cathy ~> grep −w / /etc/fstab
LABEL=/ / ext3 defaults 1 1

If this option is not used, all the lines from the file system table will be displayed.

4.2.2.2. Character classes

A bracket expression is a list of characters enclosed by "[" and "]". It matches any single character in that list;
if the first character of the list is the caret, "^", then it matches any character NOT in the list. For example, the
regular expression "[0123456789]" matches any single digit.

Within a bracket expression, a range expression consists of two characters separated by a hyphen. It matches
any single character that sorts between the two characters, inclusive, using the locale's collating sequence and
character set. For example, in the default C locale, "[a−d]" is equivalent to "[abcd]". Many locales sort
characters in dictionary order, and in these locales "[a−d]" is typically not equivalent to "[abcd]"; it might be
equivalent to "[aBbCcDd]", for example. To obtain the traditional interpretation of bracket expressions, you
can use the C locale by setting the LC_ALL environment variable to the value "C".

Finally, certain named classes of characters are predefined within bracket expressions. See the grep man or
info pages for more information about these predefined expressions.

cathy ~> grep [yf] /etc/group
sys:x:3:root,bin,adm
tty:x:5:
mail:x:12:mail,postfix
ftp:x:50:
nobody:x:99:
floppy:x:19:
xfs:x:43:
nfsnobody:x:65534:
postfix:x:89:

cathy ~> ls *[1−9].xml
app1.xml chap1.xml chap2.xml chap3.xml chap4.xml

In the example, all the lines containing either a "y" or "f" character are first displayed, followed by an example
of using a range with the ls command.

4.2.2.3. Wildcards

Use the "." for a single character match. If you want to get a list of all five−character English dictionary words
starting with "c" and ending in "h" (handy for solving crosswords):

cathy ~> grep '\<c...h\>' /usr/share/dict/words
catch
clash
cloth
coach
couch
cough
crash

Bash Guide for Beginners

Chapter 4. Regular expressions 61

crush

If you want to display lines containing the literal dot character, use the −F option to grep.

For matching multiple characters, use the asterisk. This example selects all words starting with "c" and ending
in "h" from the system's dictionary:

cathy ~> grep '\<c.*h\>' /usr/share/dict/words
caliph
cash
catch
cheesecloth
cheetah
−−output omitted−−

If you want to find the literal asterisk character in a file or output, use grep −F:

cathy ~> grep * /etc/profile

cathy ~> grep −F '*' /etc/profile
for i in /etc/profile.d/*.sh ; do

4.3. Pattern matching using Bash features

4.3.1. Character ranges

Apart from grep and regular expressions, there's a good deal of pattern matching that you can do directly in
the shell, without having to use an external program.

As you already know, the asterisk (*) and the question mark (?) match any string or any single character,
respectively. Quote these special characters to match them literally:

cathy ~> touch "*"

cathy ~> ls "*"
*

But you can also use the square braces to match any enclosed character or range of characters, if pairs of
characters are separated by a hyphen. An example:

cathy ~> ls −ld [a−cx−z]*
drwxr−xr−x 2 cathy cathy 4096 Jul 20 2002 app−defaults/
drwxrwxr−x 4 cathy cathy 4096 May 25 2002 arabic/
drwxrwxr−x 2 cathy cathy 4096 Mar 4 18:30 bin/
drwxr−xr−x 7 cathy cathy 4096 Sep 2 2001 crossover/
drwxrwxr−x 3 cathy cathy 4096 Mar 22 2002 xml/

This lists all files in cathy's home directory, starting with "a", "b", "c", "x", "y" or "z".

If the first character within the braces is "!" or "^", any character not enclosed will be matched. To match the
dash ("−"), include it as the first or last character in the set. The sorting depends on the current locale and of

Bash Guide for Beginners

Chapter 4. Regular expressions 62

the value of the LC_COLLATE variable, if it is set. Mind that other locales might interpret "[a−cx−z]" as
"[aBbCcXxYyZz]" if sorting is done in dictionary order. If you want to be sure to have the traditional
interpretation of ranges, force this behavior by setting LC_COLLATE or LC_ALL to "C".

4.3.2. Character classes

Character classes can be specified within the square braces, using the syntax [:CLASS:], where CLASS is
defined in the POSIX standard and has one of the values

"alnum", "alpha", "ascii", "blank", "cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper", "word"
or "xdigit".

Some examples:

cathy ~> ls −ld [[:digit:]]*
drwxrwxr−x 2 cathy cathy 4096 Apr 20 13:45 2/

cathy ~> ls −ld [[:upper:]]*
drwxrwxr−− 3 cathy cathy 4096 Sep 30 2001 Nautilus/
drwxrwxr−x 4 cathy cathy 4096 Jul 11 2002 OpenOffice.org1.0/
−rw−rw−r−− 1 cathy cathy 997376 Apr 18 15:39 Schedule.sdc

When the extglob shell option is enabled (using the shopt built−in), several extended pattern matching
operators are recognized. Read more in the Bash info pages, section Basic shell features−>Shell
Expansions−>Filename Expansion−>Pattern Matching.

4.4. Summary

Regular expressions are powerful tools for selecting particular lines from files or output. A lot of UNIX
commands use regular expressions: vim, perl, the PostgreSQL database and so on. They can be made
available in any language or application using external libraries, and they even found their way to non−UNIX
systems. For instance, regular expressions are used in the Excell spreadsheet that comes with the MicroSoft
Windows Office suite. In this chapter we got the feel of the grep command, which is indispensable in any
UNIX environment.

The grep command can do much more than the few tasks we discussed here; we only used it as an
example for regular expressions. The GNU grep version comes with plenty of documentation, which
you are strongly advised to read!

Bash has built−in features for matching patterns and can recognize character classes and ranges.

4.5. Exercises

These exercises will help you master regular expressions.

Display a list of all the users on your system who log in with the Bash shell as a default.1.

Bash Guide for Beginners

Chapter 4. Regular expressions 63

From the /etc/group directory, display all lines starting with the string "daemon".2.
Print all the lines from the same file that don't contain the string.3.
Display localhost information from the /etc/hosts file, display the line number(s) matching the
search string and count the number of occurrences of the string.

4.

Display a list of /usr/share/doc subdirectories containing information about shells.5.
How many README files do these subdirectories contain? Don't count anything in the form of
"README.a_string".

6.

Make a list of files in your home directory that were changed less that 10 hours ago, using grep, but
leave out directories.

7.

Put these commands in a shell script that will generate comprehensible output.8.
Can you find an alternative for wc −l, using grep?9.
Using the file system table (/etc/fstab for instance), list local disk devices.10.
Make a script that checks whether a user exists in /etc/passwd. For now, you can specify the user
name in the script, you don't have to work with arguments and conditionals at this stage.

11.

Display configuration files in /etc that contain numbers in their names.12.

Bash Guide for Beginners

Chapter 4. Regular expressions 64

Chapter 5. The GNU sed stream editor

At the end of this chapter you will know about the following topics:

What is sed?♦
Interactive use of sed♦
Regular expressions and stream editing♦
Using sed commands in scripts♦

This is an introduction

These explanations are far from complete and certainly not meant to be used as the
definite user manual for sed. This chapter is only included in order to show some more
interesting topics in the next chapters, and because every power user should have a basic
knowledge of things that can be done with this editor.

For detailed information, refer to the sed info and man pages.

5.1. Introduction

5.1.1. What is sed?

A Stream EDitor is used to perform basic transformations on text read from a file or a pipe. The result is sent
to standard output. The syntax for the sed command has no output file specification, but results can be saved
to a file using output redirection. The editor does not modify the original input.

What distinguishes sed from other editors, such as vi and ed, is its ability to filter text that it gets from a
pipeline feed. You do not need to interact with the editor while it is running; that is why sed is sometimes
called a batch editor. This feature allows use of editing commands in scripts, greatly easing repetitive editing
tasks. When facing replacement of text in a large number of files, sed is a great help.

5.1.2. sed commands

The sed program can perform text pattern substitutions and deletions using regular expressions, like the ones
used with the grep command; see Section 4.2.

The editing commands are similar to the ones used in the vi editor:

Table 5−1. Sed editing commands

Command Result

a\ Append text below current line.

c\ Change text in the current line with new text.

d Delete text.

i\ Insert text above current line.

Chapter 5. The GNU sed stream editor 65

p Print text.

r Read a file.

s Search and replace text.

w Write to a file.

Apart from editing commands, you can give options to sed. An overview is in the table below:

Table 5−2. Sed options

Option Effect

−e SCRIPT
Add the commands in SCRIPT to the set of commands to be run while processing the
input.

−f
Add the commands contained in the file SCRIPT−FILE to the set of commands to be
run while processing the input.

−n Silent mode.

−V Print version information and exit.

The sed info pages contain more information; we only list the most frequently used commands and options
here.

5.2. Interactive editing

5.2.1. Printing lines containing a pattern

This is something you can do with grep, of course, but you can't do a "find and replace" using that command.
This is just to get you started.

This is our example text file:

sandy ~> cat −n example
 1 This is the first line of an example text.
 2 It is a text with erors.
 3 Lots of erors.
 4 So much erors, all these erors are making me sick.
 5 This is a line not containing any errors.
 6 This is the last line.

sandy ~>

We want sed to find all the lines containing our search pattern, in this case "erors". We use the p to obtain the
result:

sandy ~> sed '/erors/p' example
This is the first line of an example text.
It is a text with erors.
It is a text with erors.
Lots of erors.

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 66

Lots of erors.
So much erors, all these erors are making me sick.
So much erors, all these erors are making me sick.
This is a line not containing any errors.
This is the last line.

sandy ~>

As you notice, sed prints the entire file, but the lines containing the search string are printed twice. This is not
what we want. In order to only print those lines matching our pattern, use the −n option:

sandy ~> sed −n '/erors/p' example
It is a text with erors.
Lots of erors.
So much erors, all these erors are making me sick.

sandy ~>

5.2.2. Deleting lines of input containing a pattern

We use the same example text file. Now we only want to see the lines not containing the search string:

sandy ~> sed '/erors/d' example
This is the first line of an example text.
This is a line not containing any errors.
This is the last line.

sandy ~>

The d command results in excluding lines from being displayed.

Matching lines starting with a given pattern and ending in a second pattern are showed like this:

sandy ~> sed −n '/^This.*errors.$/p' example
This is a line not containing any errors.

sandy ~>

5.2.3. Ranges of lines

This time we want to take out the lines containing the errors. In the example these are lines 2 to 4. Specify this
range to address, together with the d command:

sandy ~> sed '2,4d' example
This is the first line of an example text.
This is a line not containing any errors.
This is the last line.

sandy ~>

To print the file starting from a certain line until the end of the file, use a command similar to this:

sandy ~> sed '3,$d' example
This is the first line of an example text.
It is a text with erors.

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 67

sandy ~>

This only prints the first two lines of the example file.

The following command prints the first line containing the pattern "a text", up to and including the next line
containing the pattern "a line":

sandy ~> sed −n '/a text/,/This/p' example
It is a text with erors.
Lots of erors.
So much erors, all these erors are making me sick.
This is a line not containing any errors.

sandy ~>

5.2.4. Find and replace with sed

In the example file, we will now search and replace the errors instead of only (de)selecting the lines
containing the search string.

sandy ~> sed 's/erors/errors/' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these erors are making me sick.
This is a line not containing any errors.
This is the last line.

sandy ~>

As you can see, this is not exactly the desired effect: in line 4, only the first occurrence of the search string has
been replaced, and there is still an 'eror' left. Use the g command to indicate to sed that it should examine the
entire line instead of stopping at the first occurrence of your string:

sandy ~> sed 's/erors/errors/g' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these errors are making me sick.
This is a line not containing any errors.
This is the last line.

sandy ~>

To insert a string at the beginning of each line of a file, for instance for quoting:

sandy ~> sed 's/^/> /' example
> This is the first line of an example text.
> It is a text with erors.
> Lots of erors.
> So much erors, all these erors are making me sick.
> This is a line not containing any errors.
> This is the last line.

sandy ~>

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 68

Insert some string at the end of each line:

sandy ~> sed 's/$/EOL/' example
This is the first line of an example text.EOL
It is a text with erors.EOL
Lots of erors.EOL
So much erors, all these erors are making me sick.EOL
This is a line not containing any errors.EOL
This is the last line.EOL

sandy ~>

Multiple find and replace commands are separated with individual −e options:

sandy ~> sed −e 's/erors/errors/g' −e 's/last/final/g' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these errors are making me sick.
This is a line not containing any errors.
This is the final line.

sandy ~>

Keep in mind that by default sed prints its results to the standard output, most likely your terminal window. If
you want to save the output to a file, redirect it:

sed option 'some/expression' file_to_process > sed_output_in_a_file

More examples

Plenty of sed examples can be found in the startup scripts for your machine, which are usually in
/etc/init.d or /etc/rc.d/init.d. Change into the directory containing the initscripts on your
system and issue the following command:

grep sed *

5.3. Non−interactive editing

5.3.1. Reading sed commands from a file

Multiple sed commands can be put in a file and executed using the −f option. When creating such a file,
make sure that:

No trailing white spaces exist at the end of lines.•
No quotes are used.•
When entering text to add or replace, all except the last line end in a backslash.•

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 69

5.3.2. Writing output files

Writing output is done using the output redirection operator >. This is an example script used to create very
simple HTML files from plain text files.

sandy ~> cat script.sed
1i\
<html>\
<head><title>sed generated html</title></head>\
<body bgcolor="#ffffff">\
<pre>
$a\
</pre>\
</body>\
</html>

sandy ~> cat txt2html.sh
#!/bin/bash

This is a simple script that you can use for converting text into HTML.
First we take out all newline characters, so that the appending only happens
once, then we replace the newlines.

echo "converting $1..."

SCRIPT="/home/sandy/scripts/script.sed"
NAME="$1"
TEMPFILE="/var/tmp/sed.$PID.tmp"
sed "s/\n/^M/" $1 | sed −f $SCRIPT | sed "s/^M/\n/" > $TEMPFILE
mv $TEMPFILE $NAME

echo "done."

sandy ~>

$1 holds the first argument to a given command, in this case the name of the file to convert:

sandy ~> cat test
line1
line2
line3

More on positional parameters in Chapter 7.

sandy ~> txt2html.sh test
converting test...
done.

sandy ~> cat test
<html>
<head><title>sed generated html</title></head>
<body bgcolor="#ffffff">
<pre>
line1
line2
line3
</pre>
</body>
</html>

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 70

sandy ~>

This is not really how it is done; this example just demonstrates sed capabilities. See Section 6.3 for a more
decent solution to this problem, using awk BEGIN and END constructs.

Easy sed

Advanced editors, supporting syntax highlighting, can recognize sed syntax. This can be a great help if
you tend to forget backslashes and such.

5.4. Summary

The sed stream editor is a powerful command line tool, which can handle streams of data: it can take input
lines from a pipe. This makes it fit for non−interactive use. The sed editor uses vi−like commands and accepts
regular expressions.

The sed tool can read commands from the command line or from a script. It is often used to perform
find−and−replace actions on lines containing a pattern.

5.5. Exercises

These exercises are meant to further demonstrate what sed can do.

Print a list of files in your scripts directory, ending in ".sh". Mind that you might have to unalias
ls. Put the result in a temporary file.

1.

Make a list of files in /usr/bin that have the letter "a" as the second character. Put the result in a
temporary file.

2.

Delete the first 3 lines of each temporary file.3.
Print to standard output only the lines containing the pattern "an".4.
Create a file holding sed commands to perform the previous two tasks. Add an extra command to this
file that adds a string like "*** This might have something to do with man and man pages ***" in the
line preceding every occurence of the string "man". Check the results.

5.

A long listing of the root directory, /, is used for input. Create a file holding sed commands that
check for symbolic links and plain files. If a file is a symbolic link, precede it with a line like "−−This
is a symlink−−". If the file is a plain file, add a string on the same line, adding a comment like "<−−−
this is a plain file".

6.

Create a script that shows lines containing trailing white spaces from a file. This script should use a
sed script and show sensible information to the user.

7.

Bash Guide for Beginners

Chapter 5. The GNU sed stream editor 71

Chapter 6. The GNU awk programming language

In this chapter we will discuss:

What is gawk?♦
Using gawk commands on the command line♦
How to format text with gawk♦
How gawk uses regular expressions♦
Gawk in scripts♦
Gawk and variables♦

To make it more fun

As with sed, entire books have been written about various versions of awk. This
introduction is far from complete and is only intended for understanding examples in the
following chapters. For more information, best start with the documentation that comes
with GNU awk: "GAWK: Effective AWK Programming: A User's Guide for GNU
Awk".

6.1. Getting started with gawk

6.1.1. What is gawk?

Gawk is the GNU version of the commonly available UNIX awk program, another popular stream editor.
Since the awk program is often just a link to gawk, we will refer to it as awk.

The basic function of awk is to search files for lines or other text units containing one or more patterns. When
a line matches one of the patterns, special actions are performed on that line.

Programs in awk are different from programs in most other languages, because awk programs are
"data−driven": you describe the data you want to work with and then what to do when you find it. Most other
languages are "procedural." You have to describe, in great detail, every step the program is to take. When
working with procedural languages, it is usually much harder to clearly describe the data your program will
process. For this reason, awk programs are often refreshingly easy to read and write.

6.1.2. Gawk commands

When you run awk, you specify an awk program that tells awk what to do. The program consists of a series
of rules. (It may also contain function definitions, loops, conditions and other programming constructs,
advanced features that we will ignore for now.) Each rule specifies one pattern to search for and one action to
perform upon finding the pattern.

There are several ways to run awk. If the program is short, it is easiest to run it on the command line:

awk PROGRAM inputfile(s)

If multiple changes have to be made, possibly regularly and on multiple files, it is easier to put the awk
commands in a script. This is read like this:

Chapter 6. The GNU awk programming language 72

awk −f PROGRAM−FILEinputfile(s)

6.2. The print program

6.2.1. Printing selected fields

The print command in awk outputs selected data from the input file.

When awk reads a line of a file, it divides the line in fields based on the specified input field separator, FS,
which is an awk variable (see Section 6.3.2). This variable is predefined to be one or more spaces or tabs.

The variables $1, $2, $3, ..., $N hold the values of the first, second, third until the last field of an input line.
The variable $0 (zero) holds the value of the entire line. This is depicted in the image below, where we see
six colums in the output of the df command:

Figure 6−1. Fields in awk

In the output of ls −l, there are 9 columns. The print statement uses these fields as follows:

kelly@octarine ~/test> ls −l | awk '{ print $9 $5 }'
160orig
121script.sed
120temp_file
126test
120twolines
441txt2html.sh

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 73

kelly@octarine ~/test>

This command printed the fifth column of a long file listing, which contains the file size, and the last column,
the name of the file. This output is not very readable unless you use the official way of referring to columns,
which is to separate the ones that you want to print with a comma. In that case, the default output separater
character, usually a space, will be put in between each output field.

6.2.2. Formatting fields

Without formatting, using only the output separator, the output looks rather poor. Inserting a couple of tabs
and a string to indicate what output this is will make it look a lot better:

kelly@octarine ~/test> ls −ldh * | grep −v total | \
awk '{ print "Size is " $5 " bytes for " $9 }'
Size is 160 bytes for orig
Size is 121 bytes for script.sed
Size is 120 bytes for temp_file
Size is 126 bytes for test
Size is 120 bytes for twolines
Size is 441 bytes for txt2html.sh

kelly@octarine ~/test>

Note the use of the backslash, which makes long input continue on the next line without the shell interpreting
this as a separate command. While your command line input can be of virtually unlimited length, your
monitor is not, and printed paper certainly isn't. Using the backslash also allows for copying and pasting of the
above lines into a terminal window.

The −h option to ls is used for supplying humanly readable size formats for bigger files. The output of a long
listing displaying the total amount of blocks in the directory is given when a directory is the argument. This
line is useless to us, so we add an asterisk. We also add the −d option for the same reason, in case asterisk
expands to a directory.

The backslash in this example marks the continuation of a line. See Section 3.3.2.

You can take out any number of columns and even reverse the order. In the example below this is
demonstrated for showing the most critical partitions:

kelly@octarine ~> df −h | sort −rnk 5 | head −3 | \
awk '{ print "Partition " $6 "\t: " $5 " full!" }'
Partition /var : 86% full!
Partition /usr : 85% full!
Partition /home : 70% full!

kelly@octarine ~>

The table below gives an overview of special formatting characters:

Table 6−1. Formatting characters for gawk

SequenceMeaning

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 74

\a Bell character

\n Newline character

\t Tab

Quotes, dollar signs and other meta−characters should be escaped with a backslash.

6.2.3. The print command and regular expressions

A regular expression can be used as a pattern by enclosing it in slashes. The regular expression is then tested
against the entire text of each record. The syntax is as follows:

awk 'EXPRESSION { PROGRAM }' file(s)

The following example displays only local disk device information, networked file systems are not shown:

kelly is in ~> df −h | awk '/dev\/hd/ { print $6 "\t: " $5 }'
/ : 46%
/boot : 10%
/opt : 84%
/usr : 97%
/var : 73%
/.vol1 : 8%

kelly is in ~>

Slashes need to be escaped, because they have a special meaning to the awk program.

Below another example where we search the /etc directory for files ending in ".conf" and starting with
either "a" or "x":

kelly is in /etc> ls −l | awk '/\<[a|x].*\.conf$/ { print $9 }'
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf

kelly is in /etc>

This example illustrates the special meaning of the dot in regular expressions: the first one indicates that we
want to search for any character after the first search string, the second is escaped because it is part of a string
to find (the end of the file name).

6.2.4. Special patterns

In order to precede output with comments, use the BEGIN statement:

kelly is in /etc> ls −l | \
awk 'BEGIN { print "Files found:\n" } /\<[a|x].*\.conf$/ { print $9 }'
Files found:
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 75

kelly is in /etc>

The END statement can be added for inserting text after the entire input is processed:

kelly is in /etc> ls −l | \
awk '/\<[a|x].*\.conf$/ { print $9 } END { print \
"Can I do anything else for you, mistress?" }'
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf
Can I do anything else for you, mistress?

kelly is in /etc>

6.2.5. Gawk scripts

As commands tend to get a little longer, you might want to put them in a script, so they are reusable. An awk
script contains awk statements defining patterns and actions.

As an illustration, we will build a report that displays our most loaded partitions. See Section 6.2.2.

kelly is in ~> cat diskrep.awk
BEGIN { print "*** WARNING WARNING WARNING ***" }
/\<[8|9][0−9]%/ { print "Partition " $6 "\t: " $5 " full!" }
END { print "*** Give money for new disks URGENTLY! ***" }

kelly is in ~> df −h | awk −f diskrep.awk
*** WARNING WARNING WARNING ***
Partition /usr : 97% full!
*** Give money for new disks URGENTLY! ***

kelly is in ~>

awk first prints a begin message, then formats all the lines that contain an eight or a nine at the beginning of a
word, followed by one other number and a percentage sign. An end message is added.

Syntax highlighting

Awk is a programming language. Its syntax is recognized by most editors that can do syntax highlighting
for other languages, such as C, Bash, HTML, etc.

6.3. Gawk variables

As awk is processing the input file, it uses several variables. Some are editable, some are read−only.

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 76

6.3.1. The input field separator

The field separator, which is either a single character or a regular expression, controls the way awk splits up
an input record into fields. The input record is scanned for character sequences that match the separator
definition; the fields themselves are the text between the matches.

The field separator is represented by the built−in variable FS. Note that this is something different from the
IFS variable used by POSIX−compliant shells.

The value of the field separator variable can be changed in the awk program with the assignment operator =.
Often the right time to do this is at the beginning of execution before any input has been processed, so that the
very first record is read with the proper separator. To do this, use the special BEGIN pattern.

In the example below, we build a command that displays all the users on your system with a description:

kelly is in ~> awk 'BEGIN { FS=":" } { print $1 "\t" $5 }' /etc/passwd
−−output omitted−−
kelly Kelly Smith
franky Franky B.
eddy Eddy White
willy William Black
cathy Catherine the Great
sandy Sandy Li Wong

kelly is in ~>

In an awk script, it would look like this:

kelly is in ~> cat printnames.awk
BEGIN { FS=":" }
{ print $1 "\t" $5 }

kelly is in ~> awk −f printnames.awk /etc/passwd
−−output omitted−−

Choose input field separators carefully to prevent problems. An example to illustrate this: say you get input in
the form of lines that look like this:

"Sandy L. Wong, 64 Zoo St., Antwerp, 2000X"

You write a command line or a script, which prints out the name of the person in that record:

awk 'BEGIN { FS="," } { print $1, $2, $3 }' inputfile

But a person might have a PhD, and it might be written like this:

"Sandy L. Wong, PhD, 64 Zoo St., Antwerp, 2000X"

Your awk will give the wrong output for this line. If needed, use an extra awk or sed to uniform data input
formats.

The default input field separator is one or more whitespaces or tabs.

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 77

6.3.2. The output separators

6.3.2.1. The output field separator

Fields are normally separated by spaces in the output. This becomes apparent when you use the correct syntax
for the print command, where arguments are separated by commas:

kelly@octarine ~/test> cat test
record1 data1
record2 data2

kelly@octarine ~/test> awk '{ print $1 $2}' test
record1data1
record2data2

kelly@octarine ~/test> awk '{ print $1, $2}' test
record1 data1
record2 data2

kelly@octarine ~/test>

If you don't put in the commas, print will treat the items to output as one argument, thus omitting the use of
the default output separator, OFS.

Any character string may be used as the output field separator by setting this built−in variable.

6.3.2.2. The output record separator

The output from an entire print statement is called an output record. Each print command results in one
output record, and then outputs a string called the output record separator, ORS. The default value for this
variable is "\n", a newline character. Thus, each print statement generates a separate line.

To change the way output fields and records are separated, assign new values to OFS and ORS:

kelly@octarine ~/test> awk 'BEGIN { OFS=";" ; ORS="\n−−>\n" } \
{ print $1,$2}' test
record1;data1
−−>
record2;data2
−−>

kelly@octarine ~/test>

If the value of ORS does not contain a newline, the program's output is run together on a single line.

6.3.3. The number of records

The built−in NR holds the number of records that are processed. It is incremented after reading a new input
line. You can use it at the end to count the total number of records, or in each output record:

kelly@octarine ~/test> cat processed.awk
BEGIN { OFS="−" ; ORS="\n−−> done\n" }
{ print "Record number " NR ":\t" $1,$2 }
END { print "Number of records processed: " NR }

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 78

kelly@octarine ~/test> awk −f processed.awk test
Record number 1: record1−data1
−−> done
Record number 2: record2−data2
−−> done
Number of records processed: 2
−−> done

kelly@octarine ~/test>

6.3.4. User defined variables

Apart from the built−in variables, you can define your own. When awk encounters a reference to a variable
which does not exist (which is not predefined), the variable is created and initialized to a null string. For all
subsequent references, the value of the variable is whatever value was assigned last. Variables can be a string
or a numeric value. Content of input fields can also be assigned to variables.

Values can be assigned directly using the = operator, or you can use the current value of the variable in
combination with other operators:

kelly@octarine ~> cat revenues
20021009 20021013 consultancy BigComp 2500
20021015 20021020 training EduComp 2000
20021112 20021123 appdev SmartComp 10000
20021204 20021215 training EduComp 5000

kelly@octarine ~> cat total.awk
{ total=total + $5 }
{ print "Send bill for " $5 " dollar to " $4 }
END { print "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nTotal revenue: " total }

kelly@octarine ~> awk −f total.awk test
Send bill for 2500 dollar to BigComp
Send bill for 2000 dollar to EduComp
Send bill for 10000 dollar to SmartComp
Send bill for 5000 dollar to EduComp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total revenue: 19500

kelly@octarine ~>

C−like shorthands likeVAR+= value are also accepted.

6.3.5. More examples

The example from Section 5.3.2 becomes much easier when we use an awk script:

kelly@octarine ~/html> cat make−html−from−text.awk
BEGIN { print "<html>\n<head><title>Awk−generated HTML</title></head>\n<body bgcolor=\"#ffffff\">\n<pre>" }
{ print $0 }
END { print "</pre>\n</body>\n</html<" }

And the command to execute is also much more straightforward when using awk instead of sed:

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 79

kelly@octarine ~/html> awk −f make−html−from−text.awk testfile > file.html

Awk examples on your system

We refer again to the directory containing the initscripts on your system. Enter a command similar to the
following to see more practical examples of the widely spread usage of the awk command:

grep awk /etc/init.d/*

6.3.6. The printf program

For more precise control over the output format than what is normally provided by print, use printf. The
printf command can be used to specify the field width to use for each item, as well as various formatting
choices for numbers (such as what output base to use, whether to print an exponent, whether to print a sign,
and how many digits to print after the decimal point). This is done by supplying a string, called the format
string, that controls how and where to print the other arguments.

The syntax is the same as for the C−language printf statement; see your C introduction guide. The gawk info
pages contain full explanations.

6.4. Summary

The gawk utility interprets a special−purpose programming language, handling simple data−reformatting jobs
with just a few lines of code. It is the free version of the general UNIX awk command.

This tools reads lines of input data and can easily recognize columned output. The print program is the most
common for filtering and formatting defined fields.

On−the−fly variable declaration is straightforward and allows for simple calculation of sums, statistics and
other operations on the processed input stream. Variables and commands can be put in awk scripts for
background processing.

6.5. Exercises

These are some practical examples where awk can be useful.

For the first exercise, your input is lines in the following form:
Username:Firstname:Lastname:Telephone number

Make an awk script that will convert such a line to an LDAP record in this format:

dn: uid=Username, dc=example, dc=com
cn: Firstname Lastname
sn: Lastname
telephoneNumber: Telephone number

1.

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 80

Create a file containing a couple of test records and check.
Create a Bash script using awk and standard UNIX commands that will show the top three users of
disk space in the /home file system (if you don't have the directory holding the homes on a separate
partition, make the script for the / partition; this is present on every UNIX system). First, execute the
commands from the command line. Then put them in a script. The script should create sensible output
(sensible as in readable by the boss). If everything proves to work, have the script email its results to
you (use for instance mail −sDisk space usage <you@your_comp> < result).

If the quota daemon is running, use that information; if not, use find.

2.

Create XML−style output from a Tab−separated list in the following form:
Meaning very long line with a lot of description

meaning another long line

othermeaning more longline

testmeaning looong line, but i mean really looong.

The output should read:

<row>
<entry>Meaning</entry>
<entry>
very long line
</entry>
</row>
<row>
<entry>meaning</entry>
<entry>
long line
</entry>
</row>
<row>
<entryothermeaning</entry>
<entry>
more longline
</entry>
</row>
<row>
<entrytestmeaning</entry>
<entry>
looong line, but i mean really looong.
</entry>
</row>

Additionally, if you know anything about XML, write a BEGIN and END script to complete the table.
Or do it in HTML.

3.

Bash Guide for Beginners

Chapter 6. The GNU awk programming language 81

mailto:you@your_comp

Chapter 7. Conditional statements

In this chapter we will discuss the use of conditionals in Bash scripts. This includes the
following topics:

The if statement♦
Using the exit status of a command♦
Comparing and testing input and files♦
if/then/else constructs♦
if/then/elif/else constructs♦
Using and testing the positional parameters♦
Nested if statements♦
Boolean expressions♦
Using case statements♦

7.1. Introduction to if

7.1.1. General

At times you need to specify different courses of action to be taken in a shell script, depending on the success
or failure of a command. The if construction allows you to specify such conditions.

The most compact syntax of the if command is:

if TEST−COMMANDS; then CONSEQUENT−COMMANDS; fi

The TEST−COMMAND list is executed, and if its return status is zero, the
CONSEQUENT−COMMANDS list is executed. The return status is the exit status of the last command
executed, or zero if no condition tested true.

The TEST−COMMAND often involves numerical or string comparison tests, but it can also be any
command that returns a status of zero when it succeeds and some other status when it fails. Unary expressions
are often used to examine the status of a file. If the FILE argument to one of the primaries is of the form
/dev/fd/N, then file descriptor "N" is checked. stdin, stdout and stderr and their respective file
descriptors may also be used for tests.

7.1.1.1. Expressions used with if

The table below contains an overview of the so−called "primaries" that make up the TEST−COMMAND
command or list of commands. These primaries are put between square brackets to indicate the test of a
conditional expression.

Table 7−1. Primary expressions

Primary Meaning

[−a FILE] True if FILE exists.

Chapter 7. Conditional statements 82

[−b FILE] True if FILE exists and is a block−special file.

[−c FILE] True if FILE exists and is a character−special file.

[−d FILE] True if FILE exists and is a directory.

[−e FILE] True if FILE exists.

[−f FILE] True if FILE exists and is a regular file.

[−g FILE] True if FILE exists and its SGID bit is set.

[−h FILE] True if FILE exists and is a symbolic link.

[−k FILE] True if FILE exists and its sticky bit is set.

[−p FILE] True if FILE exists and is a named pipe (FIFO).

[−r FILE] True if FILE exists and is readable.

[−s FILE] True if FILE exists and has a size greater than zero.

[−t FD] True if file descriptor FD is open and refers to a terminal.

[−u FILE] True if FILE exists and its SUID (set user ID) bit is set.

[−w FILE] True if FILE True if FILE exists and is writable.

[−x FILE] True if FILE exists and is executable.

[−OFILE] True if FILE exists and is owned by the effective user ID.

[−GFILE] True if FILE exists and is owned by the effective group ID.

[−L FILE] True if FILE exists and is a symbolic link.

[−N FILE] True if FILE exists and has been modified since it was last read.

[−S FILE] True if FILE exists and is a socket.

[FILE1 −nt
FILE2]

True if FILE1 has been changed more recently than FILE2, or if FILE1 exists and
FILE2 does not.

[FILE1 −ot
FILE2]

True if FILE1 is older than FILE2, or is FILE2 exists and FILE1 does not.

[FILE1 −ef
FILE2]

True if FILE1 and FILE2 refer to the same device and inode numbers.

[−o OPTIONNAME
]

True if shell option "OPTIONNAME" is enabled.

[−z STRING] True of the length of "STRING" is zero.

[−n STRING] or [
STRING]

True of the length of "STRING" is non−zero.

[STRING1 ==
STRING2]

True if the strings are equal. "=" may be used instead of "==" for strict POSIX
compliance.

[STRING1 !=
STRING2]

True if the strings are not equal.

[STRING1 <
STRING2]

True if "STRING1" sorts before "STRING2" lexicographically in the current locale.

[STRING1 >
STRING2]

True if "STRING1" sorts after "STRING2" lexicographically in the current locale.

[ARG1 OP ARG2]

"OP" is one of −eq, −ne, −lt, −le, −gt or −ge. These arithmetic binary operators
return true if "ARG1" is equal to, not equal to, less than, less than or equal to, greater
than, or greater than or equal to "ARG2", respectively. "ARG1" and "ARG2" are
integers.

Bash Guide for Beginners

Chapter 7. Conditional statements 83

Expressions may be combined using the following operators, listed in decreasing order of precedence:

Table 7−2. Combining expressions

Operation Effect

[! EXPR] True if EXPR is false.

[(EXPR)]
Returns the value of EXPR. This may be used to override the normal precedence of
operators.

[EXPR1 −a EXPR2
]

True if both EXPR1 and EXPR2 are true.

[EXPR1 −o EXPR2
]

True if either EXPR1 or EXPR2 is true.

The [(or test) built−in evaluates conditional expressions using a set of rules based on the number of
arguments. More information about this subject can be found in the Bash documentation. Just like the if is
closed with fi, the opening angular bracket should be closed after the conditions have been listed.

7.1.1.2. Commands following the then statement

The CONSEQUENT−COMMANDS list that follows the then statement can be any valid UNIX command,
any executable program, any executable shell script or any shell statement, with the exception of the closing
fi. It is important to remember that the then and fi are considered to be separated statements in the shell.
Therefore, when issued on the command line, they are separated by a semi−colon.

In a script, the different parts of the if statement are usually well−separated. Below, a couple of simple
examples.

7.1.1.3. Checking files

The first example checks for the existence of a file:

anny ~> cat msgcheck.sh
#!/bin/bash

echo "This scripts checks the existence of the messages file."
echo "Checking..."
if [−f /var/log/messages]
 then
 echo "/var/log/messages exists."
fi
echo
echo "...done."

anny ~> ./msgcheck.sh
This scripts checks the existence of the messages file.
Checking...
/var/log/messages exists.

...done.

Bash Guide for Beginners

Chapter 7. Conditional statements 84

7.1.1.4. Checking shell options

To add in your Bash configuration files:

These lines will print a message if the noclobber option is set:

if [−o noclobber]
 then
 echo "Your files are protected against accidental overwriting using redirection."
fi

The environment

The above example will work when entered on the command line:

anny ~> if [−o noclobber] ; then echo ; echo "your files are protected
against overwriting." ; echo ; fi

your files are protected against overwriting.

anny ~>

However, if you use testing of conditions that depend on the environment, you might get different results
when you enter the same command in a script, because the script will open a new shell, in which
expected variables and options might not be set automatically.

7.1.2. Simple applications of if

7.1.2.1. Testing exit status

The ? variable holds the exit status of the previously executed command (the most recently completed
foreground process).

The following example shows a simple test:

anny ~> if [$? −eq 0]
More input> then echo 'That was a good job!'
More input> fi
That was a good job!

anny ~>

The following example demonstrates that TEST−COMMANDS might be any UNIX command that returns
an exit status, and that if again returns an exit status of zero:

anny ~> if ! grep $USER /etc/passwd
More input> then echo "your user account is not managed locally"; fi
your user account is not managed locally

anny > echo $?
0

anny >

Bash Guide for Beginners

Chapter 7. Conditional statements 85

The same result can be obtained as follows:

anny > grep $USER /etc/passwd

anny > if [$? −ne 0] ; then echo "not a local account" ; fi
not a local account

anny >

7.1.2.2. Numeric comparisons

The examples below use numerical comparisons:

anny > num=`wc −l work.txt`

anny > echo $num
201

anny > if ["num" > 150]
More input> then echo ; echo "you've worked hard enough for today."
More input> echo ; fi

you've worked hard enough for today.

anny >

This script is executed by cron every Sunday. If the week number is even, it reminds you to put out the
garbage cans:

#!/bin/bash

Calculate the week number using the date command:

WEEKOFFSET=$[$(date +"%V") % 2]

Test if we have a remainder. If not, this is an even week so send a message.
Else, do nothing.

if [$WEEKOFFSET −eq "0"]; then
 echo "Sunday evening, put out the garbage cans." | mail −s "Garbage cans out" your@your_domain.org

7.1.2.3. String comparisons

An example of comparing strings for testing the user ID:

if ["$(whoami)" != 'root']; then
 echo "You have no permission to run $0 as non−root user."
 exit 1;
fi

With Bash, you can shorten this type of construct. The compact equivalent of the above test is as follows:

["$(whoami)" != 'root'] && echo you are using a non−privileged account

Bash Guide for Beginners

Chapter 7. Conditional statements 86

Regular expressions may also be used:

anny > gender="female"

anny > if [["$gender" == "f*"]]
More input> then echo "Pleasure to meet you, Madame."; fi
Pleasure to meet you, Madame.

anny >

See the info pages for Bash for more information on pattern matching with the "((EXPRESSION))" and "[[
EXPRESSION]]" constructs.

7.2. More advanced if usage

7.2.1. if/then/else constructs

7.2.1.1. Dummy example

This is the construct to use to take one course of action if the if commands test true, and another if it tests
false. An example:

freddy scripts> gender="male"

freddy scripts> if [["$gender" == "f*"]]
More input> then echo "Pleasure to meet you, Madame."
More input> else echo "How come the lady hasn't got a drink yet?"
More input> fi
How come the lady hasn't got a drink yet?

freddy scripts>

Like the CONSEQUENT−COMMANDS list following the then statement, the
ALTERNATE−CONSEQUENT−COMMANDS list following the else statement can hold any UNIX−style
command that returns an exit status.

Another example, extending the one from Section 7.1.2.1:

anny ~> su −
Password:
[root@elegance root]# if ! grep ^$USER /etc/passwd 1> /dev/null
> then echo "your user account is not managed locally"
> else echo "your account is managed from the local /etc/passwd file"
> fi
your account is managed from the local /etc/passwd file
[root@elegance root]#

We switch to the root account to demonstrate the effect of the else statement − your root is usually a local
account while your own user account might be managed by a central system, such as an LDAP server.

Bash Guide for Beginners

Chapter 7. Conditional statements 87

7.2.1.2. Checking command line arguments

Instead of setting a variable and then executing a script, it is frequently more elegant to put the values for the
variables on the command line.

We use the positional parameters $1, $2, ..., $N for this purpose. $# refers to the number of command line
arguments. $0 refers to the name of the script.

The following is a simple example:

Figure 7−1. Testing of a command line argument with if

Here's another example, using two arguments:

anny ~> cat weight.sh
#!/bin/bash

This script prints a message about your weight if you give it your
weight in kilos and hight in centimeters.

weight="$1"
height="$2"
idealweight=$[$height − 110]

if [$weight −le $idealweight] ; then
 echo "You should eat a bit more fat."
else
 echo "You should eat a bit more fruit."
fi

anny ~> bash −x weight.sh 55 169
+ weight=55

Bash Guide for Beginners

Chapter 7. Conditional statements 88

+ height=169
+ idealweight=59
+ '[' 55 −le 59 ']'
+ echo 'You should eat a bit more fat.'
You should eat a bit more fat.

7.2.1.3. Testing the number of arguments

The following example shows how to change the previous script so that it prints a message if more or less
than 2 arguments are given:

anny ~> cat weight.sh
#!/bin/bash

This script prints a message about your weight if you give it your
weight in kilos and hight in centimeters.

if [! $# == 2]; then
 echo "Usage: $0 weight_in_kilos length_in_centimeters"
 exit
fi

weight="$1"
height="$2"
idealweight=$[$height − 110]

if [$weight −le $idealweight] ; then
 echo "You should eat a bit more fat."
else
 echo "You should eat a bit more fruit."
fi

anny ~> weight.sh 70 150
You should eat a bit more fruit.

anny ~> weight.sh 70 150 33
Usage: ./weight.sh weight_in_kilos length_in_centimeters

The first argument is referred to as $1, the second as $2 and so on. The total number of arguments is stored in
$#.

Check out Section 7.2.5 for a more elegant way to print usage messages.

7.2.1.4. Testing that a file exists

This test is done in a lot of scripts, because there's no use in starting a lot of programs if you know they're not
going to work:

#!/bin/bash

This script gives information about a file.

FILENAME="$1"

echo "Properties for $FILENAME:"

if [−f $FILENAME]; then

Bash Guide for Beginners

Chapter 7. Conditional statements 89

 echo "Size is $(ls −lh $FILENAME | awk '{ print $5 }')"
 echo "Type is $(file $FILENAME | cut −d":" −f2 −)"
 echo "Inode number is $(ls −i $FILENAME | cut −d" " −f1 −)"
 echo "$(df −h $FILENAME | grep −v Mounted | awk '{ print "On",$1", \
which is mounted as the",$6,"partition."}')"
else
 echo "File does not exist."
fi

Note that the file is referred to using a variable; in this case it is the first argument to the script. Alternatively,
when no arguments are given, file locations are usually stored in variables at the beginning of a script, and
their content is referred to using these variables. Thus, when you want to change a file name in a script, you
only need to do it once.

7.2.2. if/then/elif/else constructs

7.2.2.1. General

This is the full form of the if statement:

if TEST−COMMANDS; then

CONSEQUENT−COMMANDS;

elif MORE−TEST−COMMANDS; then

MORE−CONSEQUENT−COMMANDS;

else ALTERNATE−CONSEQUENT−COMMANDS; then

fi

The TEST−COMMANDS list is executed, and if its return status is zero, the
CONSEQUENT−COMMANDS list is executed. If TEST−COMMANDS returns a non−zero status, each
elif list is executed in turn, and if its exit status is zero, the corresponding
MORE−CONSEQUENT−COMMANDS is executed and the command completes. If else is followed by an
ALTERNATE−CONSEQUENT−COMMANDS list, and the final command in the final if or elif clause has
a non−zero exit status, then ALTERNATE−CONSEQUENT−COMMANDS is executed. The return status
is the exit status of the last command executed, or zero if no condition tested true.

7.2.2.2. Example

This is an example that you can put in your crontab for daily execution:

anny /etc/cron.daily> cat disktest.sh
#!/bin/bash

This script does a very simple test for checking disk space.

space=`df −h | awk '{print $5}' | grep % | grep −v Use | sort −n | tail −1 | cut −d "%" −f1 −`
alertvalue="80"

if ["$space" −ge "$alertvalue"]; then

Bash Guide for Beginners

Chapter 7. Conditional statements 90

 echo "At least one of my disks is nearly full!" | mail −s "daily diskcheck" root
else
 echo "Disk space normal" | mail −s "daily diskcheck" root
fi

7.2.3. Nested if statements

Inside the if statement, you can use another if statement. You may use as many levels of nested ifs as you can
logically manage.

This is an example testing leap years:

anny ~/testdir> cat testleap.sh
#!/bin/bash
This script will test if we're in a leap year or not.

year=`date +%Y`

if [$[$year % 400] −eq "0"]; then
 echo "This is a leap year. February has 29 days."
elif [$[$year % 4] −eq 0]; then
 if [$[$year % 100] −ne 0]; then
 echo "This is a leap year, February has 29 days."
 else
 echo "This is not a leap year. February has 28 days."
 fi
else
 echo "This is not a leap year. February has 28 days."
fi

anny ~/testdir> date
Tue Jan 14 20:37:55 CET 2003

anny ~/testdir> testleap.sh
This is not a leap year.

7.2.4. Boolean operations

The above script can be shortened using the Boolean operators "AND" (&&) and "OR" (||).

Figure 7−2. Example using Boolean operators

Bash Guide for Beginners

Chapter 7. Conditional statements 91

We use the double brackets for testing an arithmetic expression, see Section 3.4.6. This is equivalent to the let
statement. You will get stuck using angular brackets here, if you try something like $[$year % 400], because
here, the angular brackets don't represent an actual command by themselves.

Among other editors, gvim is one of those supporting colour schemes according to the file format; such
editors are useful for detecting errors in your code.

7.2.5. Using the exit statement and if

We already briefly met the exit statement in Section 7.2.1.3. It terminates execution of the entire script. It is
most often used if the input requested from the user is incorrect, if a statement did not run successfully or if
some other error occurred.

The exit statement takes an optional argument. This argument is the integer exit status code, which is passed
back to the parent and stored in the $? variable.

A zero argument means that the script ran successfully. Any other value may be used by programmers to pass
back different messages to the parent, so that different actions can be taken according to failure or success of
the child process. If no argument is given to the exit command, the parent shell uses the current value of the
$? variable.

Below is an example with a slightly adapted penguin.sh script, which sends its exit status back to the
parent, feed.sh:

anny ~/testdir> cat penguin.sh
#!/bin/bash

This script lets you present different menus to Tux. He will only be happy
when given a fish. We've also added a dolphin and (presumably) a camel.

if ["$menu" == "fish"]; then
 if ["$animal" == "penguin"]; then
 echo "Hmmmmmm fish... Tux happy!"
 elif ["$animal" == "dolphin"]; then
 echo "Pweetpeettreetppeterdepweet!"
 else
 echo "*prrrrrrrt*"

Bash Guide for Beginners

Chapter 7. Conditional statements 92

 fi
else
 if ["$animal" == "penguin"]; then
 echo "Tux don't like that. Tux wants fish!"
 exit 1
 elif ["$animal" == "dolphin"]; then
 echo "Pweepwishpeeterdepweet!"
 exit 2
 else
 echo "Will you read this sign?!"
 exit 3
 fi
fi

This script is called upon in the next one, which therefore exports its variables menu and animal:

anny ~/testdir> cat feed.sh
#!/bin/bash
This script acts upon the exit status given by penguin.sh

export menu="$1"
export animal="$2"

feed="/nethome/anny/testdir/penguin.sh"

$feed $menu $animal

case $? in

1)
 echo "Guard: You'd better give'm a fish, less they get violent..."
 ;;
2)
 echo "Guard: It's because of people like you that they are leaving earth all the time..."
 ;;
3)
 echo "Guard: Buy the food that the Zoo provides for the animals, you ***, how
do you think we survive?"
 ;;
*)
 echo "Guard: Don't forget the guide!"
 ;;
esac

anny ~/testdir> ./feed.sh apple penguin
Tux don't like that. Tux wants fish!
Guard: You'd better give'm a fish, less they get violent...

As you can see, exit status codes can be chosen freely. Existing commands usually have a series of defined
codes; see the programmer's manual for each command for more information.

7.3. Using case statements

Bash Guide for Beginners

Chapter 7. Conditional statements 93

7.3.1. Simplified conditions

Nested if statements might be nice, but as soon as you are confronted with a couple of different possible
actions to take, they tend to confuse. For the more complex conditionals, use the case syntax:

case EXPRESSION in CASE1) COMMAND−LIST;; CASE2) COMMAND−LIST;; ... CASEN)
COMMAND−LIST;; esac

Each case is an expression matching a pattern. The commands in the COMMAND−LIST for the first match
are executed. The "|" symbol is used for separating multiple patterns, and the ")" operator terminates a pattern
list. Each case plus its according commands are called a clause. Each clause must be terminated with ";;".
Each case statement is ended with the esac statement.

In the example, we demonstrate use of cases for sending a more selective warning message with the
disktest.sh script:

anny ~/testdir> cat disktest.sh
#!/bin/bash

This script does a very simple test for checking disk space.

space=`df −h | awk '{print $5}' | grep % | grep −v Use | sort −n | tail −1 | cut −d "%" −f1 −`

case $space in
[1−6]*)
 Message="All is quiet."
 ;;
[7−8]*)
 Message="Start thinking about cleaning out some stuff. There's a partition that is $space % full."
 ;;
9[1−8])
 Message="Better hurry with that new disk... One partition is $space % full."
 ;;
99)
 Message="I'm drowning here! There's a partition at $space %!"
 ;;
*)
 Message="I seem to be running with an nonexitent amount of disk space..."
 ;;
esac

echo $Message | mail −s "disk report `date`" anny

anny ~/testdir>
You have new mail.

anny ~/testdir> tail −16 /var/spool/mail/anny
From anny@octarine Tue Jan 14 22:10:47 2003
Return−Path: <anny@octarine>
Received: from octarine (localhost [127.0.0.1])
 by octarine (8.12.5/8.12.5) with ESMTP id h0ELAlBG020414
 for <anny@octarine>; Tue, 14 Jan 2003 22:10:47 +0100
Received: (from anny@localhost)
 by octarine (8.12.5/8.12.5/Submit) id h0ELAltn020413
 for anny; Tue, 14 Jan 2003 22:10:47 +0100
Date: Tue, 14 Jan 2003 22:10:47 +0100
From: Anny <anny@octarine>
Message−Id: <200301142110.h0ELAltn020413@octarine>

Bash Guide for Beginners

Chapter 7. Conditional statements 94

To: anny@octarine
Subject: disk report Tue Jan 14 22:10:47 CET 2003

Start thinking about cleaning out some stuff. There's a partition that is 87 % full.

anny ~/testdir>

Of course you could have opened your mail program to check the results; this is just to demonstrate that the
script sends a decent mail with "To:", "Subject:" and "From:" header lines.

Many more examples using case statements can be found in your system's init script directory. The startup
scripts use start and stop cases to run or stop system processes. A theoretical example can be found in the
next section.

7.3.2. Initscript example

Initscripts often make use of case statements for starting, stopping and querying system services. This is an
excerpt of the script that starts Anacron, a daemon that runs commands periodically with a frequency
specified in days.

case "$1" in
 start)
 start
 ;;

 stop)
 stop
 ;;

 status)
 status anacron
 ;;
 restart)
 stop
 start
 ;;
 condrestart)
 if test "x`pidof anacron`" != x; then
 stop
 start
 fi
 ;;

 *)
 echo $"Usage: $0 {start|stop|restart|condrestart|status}"
 exit 1

esac

The tasks to execute in each case, such as stopping and starting the daemon, are defined in functions, which
are partially sourced from the /etc/rc.d/init.d/functions file. See Chapter 11 for more
explanation.

Bash Guide for Beginners

Chapter 7. Conditional statements 95

7.4. Summary

In this chapter we learned how to build conditions into our scripts so that different actions can be undertaken
upon success or failure of a command. The actions can be determined using the if statement. This allows you
to perform arithmetic and string comparisons, and testing of exit code, input and files needed by the script.

A simple if/then/fi test often preceeds commands in a shell script in order to prevent output generation, so that
the script can easily be run in the background or through the cron facility. More complex definitions of
conditions are usually put in a case statement.

Upon successful condition testing, the script can explicitly inform the parent using the exit 0 status. Upon
failure, any other number may be returned. Based on the return code, the parent program can take appropriate
action.

7.5. Exercises

Here are some ideas to get you started using if in scripts:

Use an if/then/elif/else construct that prints information about the current month. The script should
print the number of days in this month, and give information about leap years if the current month is
February.

1.

Do the same, using a case statement and an alternative use of the date command.2.
Modify /etc/profile so that you get a special greeting message when you connect to your
system as root.

3.

Edit the leaptest.sh script from Section 7.2.4 so that it requires one argument, the year. Test that
exactly one argument is supplied.

4.

Write a script called whichdaemon.sh that checks if the httpd and init daemons are running on
your system. If an httpd is running, the script should print a message like, "This machine is running a
web server." Use ps to check on processes.

5.

Write a script that makes a backup of your home directory on a remote machine using scp. The script
should report in a log file, for instance ~/log/homebackup.log. If you don't have a second
machine to copy the backup to, use scp to test copying it to the localhost. This requires SSH keys
between the two hosts, or else you have to supply a password. The creation of SSH keys is explained
in man ssh−keygen.

The script should use tar cf for the creation of the backup and gzip or bzip2 for compressing the
.tar file. Put all filenames in variables. Put the name of the remote server and the remote directory
in a variable. This will make it easier to re−use the script or to make changes to it in the future.

The script should check for the existence of a compressed archive. If this exists, remove it first in
order to prevent output generation.

The script should also check for available diskspace. Keep in mind that at any given moment you
could have the data in your home directory, the data in the .tar file and the data in the compressed
archive all together on your disk. If there is not enough diskspace, exit with an error message in the
log file.

6.

Bash Guide for Beginners

Chapter 7. Conditional statements 96

The script should clean up the compressed archive before it exits.

Bash Guide for Beginners

Chapter 7. Conditional statements 97

Chapter 8. Writing interactive scripts

In this chapter we will discuss how to interact with the users of our scripts:

Printing user friendly messages and explanations♦
Catching user input♦
Prompting for user input♦
Using the file descriptors to read from and write to multiple files♦

8.1. Displaying user messages

8.1.1. Interactive or not?

Some scripts run without any interaction from the user at all. Advantages of non−interactive scripts include:

The script runs in a predictable way every time.•
The script can run in the background.•

Many scripts, however, require input from the user, or give output to the user as the script is running. The
advantages of interactive scripts are, among others:

More flexible scripts can be built.•
Users can customize the script as it runs or make it behave in different ways.•
The script can report its progress as it runs.•

When writing interactive scripts, never hold back on comments. A script that prints appropriate messages is
much more user−friendly and can be more easily debugged. A script might do a perfect job, but you will get a
whole lot of support calls if it does not inform the user about what it is doing. So include messages that tell the
user to wait for output because a calculation is being done. If possible, try to give an indication of how long
the user will have to wait. If the waiting should regularly take a long time when executing a certain task, you
might want to consider integrating some processing indication in the output of your script.

When prompting the user for input, it is also better to give too much than too little information about the kind
of data to be entered. This applies to the checking of arguments and the accompanying usage message as well.

Bash has the echo and printf commands to provide comments for users, and although you should be familiar
with at least the use of echo by now, we will discuss some more examples in the next sections.

8.1.2. Using the echo built−in command

The echo built−in command outputs its arguments, separated by spaces and terminated with a newline
character. The return status is always zero. echo takes a couple of options:

−e: interprets backslash−escaped characters.•
−n: suppresses the trailing newline.•

As an example of adding comments, we will make the feed.sh and penguin.sh from Section 7.2.1.2 a

Chapter 8. Writing interactive scripts 98

bit better:

michel ~/test> cat penguin.sh
#!/bin/bash

This script lets you present different menus to Tux. He will only be happy
when given a fish. To make it more fun, we added a couple more animals.

if ["$menu" == "fish"]; then
 if ["$animal" == "penguin"]; then
 echo −e "Hmmmmmm fish... Tux happy!\n"
 elif ["$animal" == "dolphin"]; then
 echo −e "\a\a\aPweetpeettreetppeterdepweet!\a\a\a\n"
 else
 echo −e "*prrrrrrrt*\n"
 fi
else
 if ["$animal" == "penguin"]; then
 echo −e "Tux don't like that. Tux wants fish!\n"
 exit 1
 elif ["$animal" == "dolphin"]; then
 echo −e "\a\a\a\a\a\aPweepwishpeeterdepweet!\a\a\a"
 exit 2
 else
 echo −e "Will you read this sign?! Don't feed the "$animal"s!\n"
 exit 3
 fi
fi

michel ~/test> cat feed.sh
#!/bin/bash
This script acts upon the exit status given by penguin.sh

if ["$#" != "2"]; then
 echo −e "Usage of the feed script:\t$0 food−on−menu animal−name\n"
 exit 1
else

 export menu="$1"
 export animal="$2"

 echo −e "Feeding $menu to $animal...\n"

 feed="/nethome/anny/testdir/penguin.sh"

 $feed $menu $animal

result="$?"

 echo −e "Done feeding.\n"

case "$result" in

 1)
 echo −e "Guard: \"You'd better give'm a fish, less they get violent...\"\n"
 ;;
 2)
 echo −e "Guard: \"No wonder they flee our planet...\"\n"
 ;;
 3)
 echo −e "Guard: \"Buy the food that the Zoo provides at the entry, you ***\"\n"
 echo −e "Guard: \"You want to poison them, do you?\"\n"

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 99

 ;;
 *)
 echo −e "Guard: \"Don't forget the guide!\"\n"
 ;;
 esac

fi

echo "Leaving..."
echo −e "\a\a\aThanks for visiting the Zoo, hope to see you again soon!\n"

michel ~/test> feed.sh apple camel
Feeding apple to camel...

Will you read this sign?! Don't feed the camels!

Done feeding.

Guard: "Buy the food that the Zoo provides at the entry, you ***"

Guard: "You want to poison them, do you?"

Leaving...
Thanks for visiting the Zoo, hope to see you again soon!

michel ~/test> feed.sh apple
Usage of the feed script: ./feed.sh food−on−menu animal−name

More about escape characters can be found in Section 3.3.2. The following table gives an overview of
sequences recognized by the echo command:

Table 8−1. Escape sequences used by the echo command

SequenceMeaning

\a Alert (bell).

\b Backspace.

\c Suppress trailing newline.

\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ Backslash.

\ONNN The eight−bit character whose value is the octal value NNN (zero to three octal digits).

\NNN The eight−bit character whose value is the octal value NNN (one to three octal digits).

\xHH The eight−bit character whose value is the hexadecimal value (one or two hexadecimal digits).

For more information about the printf command and the way it allows you to format output, see the Bash info
pages.

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 100

8.2. Catching user input

8.2.1. Using the read built−in command

The read built−in command is the counterpart of the echo and printf commands. The syntax of the read
command is as follows:

read [options] NAME1 NAME2 ... NAMEN

One line is read from the standard input, or from the file descriptor supplied as an argument to the −u option.
The first word of the line is assigned to the first name, NAME1, the second word to the second name, and so
on, with leftover words and their intervening separators assigned to the last name, NAMEN. If there are fewer
words read from the input stream than there are names, the remaining names are assigned empty values.

The characters in the value of the IFS variable are used to split the input line into words or tokens; see
Section 3.4.8. The backslash character may be used to remove any special meaning for the next character read
and for line continuation.

If no names are supplied, the line read is assigned to the variable REPLY.

The return code of the read command is zero, unless an end−of−file character is encountered, if read times
out or if an invalid file descriptor is supplied as the argument to the −u option.

The following options are supported by the Bash read built−in:

Table 8−2. Options to the read built−in

Option Meaning

−a ANAME
The words are assigned to sequential indexes of the array variable ANAME, starting at
0. All elements are removed from ANAME before the assignment. Other NAME
arguments are ignored.

−d DELIM The first character of DELIM is used to terminate the input line, rather than newline.

−e readline is used to obtain the line.

−n NCHARS
read returns after reading NCHARS characters rather than waiting for a complete line
of input.

−p PROMPT
Display PROMPT, without a trailing newline, before attempting to read any input. The
prompt is displayed only if input is coming from a terminal.

−r
If this option is given, backslash does not act as an escape character. The backslash is
considered to be part of the line. In particular, a backslash−newline pair may not be
used as a line continuation.

−s Silent mode. If input is coming from a terminal, characters are not echoed.

−t TIMEOUT
Cause read to time out and return failure if a complete line of input is not read within
TIMEOUT seconds. This option has no effect if read is not reading input from the
terminal or from a pipe.

−u FD Read input from file descriptor FD.

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 101

This is a straightforward example, improving on the leaptest.sh script from the previous chapter:

michel ~/test> cat leaptest.sh
#!/bin/bash
This script will test if you have given a leap year or not.

echo "Type the year that you want to check (4 digits), followed by [ENTER]:"

read year

if ((("$year" % 400) == "0")) || ((("$year" % 4 == "0") && ("$year" % 100 !=
"0"))); then
 echo "$year is a leap year."
else
 echo "This is not a leap year."
fi

michel ~/test> leaptest.sh
Type the year that you want to check (4 digits), followed by [ENTER]:
2000
2000 is a leap year.

8.2.2. Prompting for user input

The following example shows how you can use prompts to explain what the user should enter.

michel ~/test> cat friends.sh
#!/bin/bash

This is a program that keeps your address book up to date.

friends="/var/tmp/michel/friends"

echo "Hello, "$USER". This script will register you in Michel's friends database."

echo −n "Enter your name and press [ENTER]: "
read name
echo −n "Enter your gender and press [ENTER]: "
read −n 1 gender
echo

grep −i "$name" "$friends"

if [$? == 0]; then
 echo "You are already registered, quitting."
 exit 1
elif ["$gender" == "m"]; then
 echo "You are added to Michel's friends list."
 exit 1
else
 echo −n "How old are you? "
 read age
 if [$age −lt 25]; then
 echo −n "Which colour of hair do you have? "
 read colour
 echo "$name $age $colour" >> "$friends"
 echo "You are added to Michel's friends list. Thank you so much!"
 else
 echo "You are added to Michel's friends list."
 exit 1

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 102

 fi
fi

michel ~/test> cp friends.sh /var/tmp; cd /var/tmp

michel ~/test> touch friends; chmod a+w friends

michel ~/test> friends.sh
Hello, michel. This script will register you in Michel's friends database.
Enter your name and press [ENTER]: michel
Enter your gender and press [ENTER] :m
You are added to Michel's friends list.

michel ~/test> cat friends

Note that no output is omitted here. The script only stores information about the people Michel is interested
in, but it will always say you are added to the list, unless you are already in it.

Other people can now start executing the script:

[anny@octarine tmp]$ friends.sh
Hello, anny. This script will register you in Michel's friends database.
Enter your name and press [ENTER]: anny
Enter your gender and press [ENTER] :f
How old are you? 22
Which colour of hair do you have? black
You are added to Michel's friends list.

After a while, the friends list begins to look like this:

tille 24 black
anny 22 black
katya 22 blonde
maria 21 black
−−output omitted−−

Of course, this situation is not ideal, since everybody can edit (but not delete) Michel's files. You can solve
this problem using special access modes on the script file, see SUID and SGID in the Introduction to Linux
guide.

8.2.3. Redirection and file descriptors

8.2.3.1. General

As you know from basic shell usage, input and output of a command may be redirected before it is executed,
using a special notation − the redirection operators − interpreted by the shell. Redirection may also be used to
open and close files for the current shell execution environment.

Redirection can also occur in a script, so that it can receive input from a file, for instance, or send output to a
file. Later, the user can review the output file, or it may be used by another script as input.

File input and output are accomplished by integer handles that track all open files for a given process. These
numeric values are known as file descriptors. The best known file descriptors are stdin, stdout and stderr, with
file descriptor numbers 0, 1 and 2, respectively. These numbers and respective devices are reserved. Bash can

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 103

http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06

take TCP or UDP ports on networked hosts as file descriptors as well.

The output below shows how the reserved file descriptors point to actual devices:

michel ~> ls −l /dev/std*
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stderr −> ../proc/self/fd/2
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stdin −> ../proc/self/fd/0
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stdout −> ../proc/self/fd/1

michel ~> ls −l /proc/self/fd/[0−2]
lrwx−−−−−− 1 michel michel 64 Jan 23 12:11 /proc/self/fd/0 −> /dev/pts/6
lrwx−−−−−− 1 michel michel 64 Jan 23 12:11 /proc/self/fd/1 −> /dev/pts/6
lrwx−−−−−− 1 michel michel 64 Jan 23 12:11 /proc/self/fd/2 −> /dev/pts/6

You might want to check info MAKEDEV and info proc for more information about /proc subdirectories
and the way your system handles standard file descriptors for each running process.

When you run a script from the command line, nothing much changes because the child shell process will use
the same file descriptors as the parent. When no such parent is available, for instance when you run a script
using the cron facility, the standard file descriptors are pipes or other (temporary) files, unless some form of
redirection is used. This is demonstrated in the example below, which shows output from a simple at script:

michel ~> date
Fri Jan 24 11:05:50 CET 2003

michel ~> at 1107
warning: commands will be executed using (in order)
a) $SHELL b) login shell c)/bin/sh
at> ls −l /proc/self/fd/ > /var/tmp/fdtest.at
at> <EOT>
job 10 at 2003−01−24 11:07

michel ~> cat /var/tmp/fdtest.at
total 0
lr−x−−−−−− 1 michel michel 64 Jan 24 11:07 0 −> /var/spool/at/!0000c010959eb (deleted)
l−wx−−−−−− 1 michel michel 64 Jan 24 11:07 1 −> /var/tmp/fdtest.at
l−wx−−−−−− 1 michel michel 64 Jan 24 11:07 2 −> /var/spool/at/spool/a0000c010959eb
lr−x−−−−−− 1 michel michel 64 Jan 24 11:07 3 −> /proc/21949/fd

And one with cron:

michel ~> crontab −l
DO NOT EDIT THIS FILE − edit the master and reinstall.
(/tmp/crontab.21968 installed on Fri Jan 24 11:30:41 2003)
(Cron version −− $Id: chap8.xml,v 1.3 2004/07/09 05:39:30 tille Exp $)
32 11 * * * ls −l /proc/self/fd/ > /var/tmp/fdtest.cron

michel ~> cat /var/tmp/fdtest.cron
total 0
lr−x−−−−−− 1 michel michel 64 Jan 24 11:32 0 −> pipe:[124440]
l−wx−−−−−− 1 michel michel 64 Jan 24 11:32 1 −> /var/tmp/fdtest.cron
l−wx−−−−−− 1 michel michel 64 Jan 24 11:32 2 −> pipe:[124441]
lr−x−−−−−− 1 michel michel 64 Jan 24 11:32 3 −> /proc/21974/fd

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 104

8.2.3.2. Redirection of errors

From the previous examples, it is clear that you can provide input and output files for a script (see Section
8.2.4 for more), but some tend to forget about redirecting errors − output which might be depended upon later
on. Also, if you are lucky, errors will be mailed to you and eventual causes of failure might get revealed. If
you are not as lucky, errors will cause your script to fail and won't be caught or sent anywhere, so that you
can't start to do any worthwhile debugging.

When redirecting errors, note that the order of precedence is significant. For example, this command, issued in
/var/spool

ls −l * 2 > /var/tmp/unaccessible−in−spool

will redirect output of the ls command to the file unaccessible−in−spool in /var/tmp. The
command

ls −l * > /var/tmp/spoollist 2 >& 1

will direct both standard input and standard error to the file spoollist. The command

ls −l * 2 >& 1 > /var/tmp/spoollist

directs only the standard output to the destination file, because the standard error is copied to standard output
before the standard output is redirected.

For convenience, errors are often redirected to /dev/null, if it is sure they will not be needed. Hundreds of
examples can be found in the startup scripts for your system.

Bash allows for both standard output and standard error to be redirected to the file whose name is the result of
the expansion of FILE with this construct:

&> FILE

This is the equivalent of > FILE 2>&1, the construct used in the previous set of examples. It is also often
combined with redirection to /dev/null, for instance when you just want a command to execute, no matter
what output or errors it gives.

8.2.4. File input and output

8.2.4.1. Using /dev/fd

The /dev/fd directory contains entries named 0, 1, 2, and so on. Opening the file /dev/fd/N is
equivalent to duplicating file descriptor N. If your system provides /dev/stdin, /dev/stdout and
/dev/stderr, you will see that these are equivalent to /dev/fd/0, /dev/fd/1 and /dev/fd/2,
respectively.

The main use of the /dev/fd files is from the shell. This mechanism allows for programs that use pathname
arguments to handle standard input and standard output in the same way as other pathnames. If /dev/fd is
not available on a system, you'll have to find a way to bypass the problem. This can be done for instance using
a hyphen (−) to indicate that a program should read from a pipe. An example:

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 105

michel ~> filter body.txt.gz | cat header.txt − footer.txt
This text is printed at the beginning of each print job and thanks the sysadmin
for setting us up such a great printing infrastructure.

Text to be filtered.

This text is printed at the end of each print job.

The cat command first reads the file header.txt, next its standard input which is the output of the filter
command, and last the footer.txt file. The special meaning of the hyphen as a command−line argument
to refer to the standard input or standard output is a misconception that has crept into many programs. There
might also be problems when specifying hyphen as the first argument, since it might be interpreted as an
option to the preceding command. Using /dev/fd allows for uniformity and prevents confusion:

michel ~> filter body.txt | cat header.txt /dev/fd/0 footer.txt | lp

In this clean example, all output is additionally piped through lp to send it to the default printer.

8.2.4.2. Read and exec

8.2.4.2.1. Assigning file descriptors to files

Another way of looking at file descriptors is thinking of them as a way to assign a numeric value to a file.
Instead of using the file name, you can use the file descriptor number. The exec built−in command is used to
assign a file descriptor to a file. Use

exec fdN> file

for assigning file descriptor N to file for output, and

exec fdN< file

for assigning file descriptor N to file for input. After a file descriptor has been assigned to a file, it can be
used with the shell redirection operators, as is demonstrated in the following example:

michel ~> exec 4 > result.txt

michel ~> filter body.txt | cat header.txt /dev/fd/0 footer.txt >& 4

michel ~> cat result.txt
This text is printed at the beginning of each print job and thanks the sysadmin
for setting us up such a great printing infrastructure.

Text to be filtered.

This text is printed at the end of each print job.

File descriptor 5

Using this file descriptor might cause problems, see the Advanced Bash−Scripting Guide, chapter 16.
You are strongly advised not to use it.

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 106

http://www.tldp.org/LDP/abs/html/io-redirection.html

8.2.4.2.2. Read in scripts

The following is an example that shows how you can alternate between file input and command line input:

michel ~/testdir> cat sysnotes.sh
#!/bin/bash

This script makes an index of important config files, puts them together in
a backup file and allows for adding comment for each file.

CONFIG=/var/tmp/sysconfig.out
rm "$CONFIG" 2>/dev/null

echo "Output will be saved in $CONFIG."

exec 7<&0

exec < /etc/passwd

Read the first line of /etc/passwd
read rootpasswd

echo "Saving root account info..."
echo "Your root account info:" >> "$CONFIG"
echo $rootpasswd >> "$CONFIG"

exec 0<&7 7<&−

echo −n "Enter comment or [ENTER] for no comment: "
read comment; echo $comment >> "$CONFIG"

echo "Saving hosts information..."

first prepare a hosts file not containing any comments
TEMP="/var/tmp/hosts.tmp"
cat /etc/hosts | grep −v "^#" > "$TEMP"

exec 7<&0
exec < "$TEMP"

read ip1 name1 alias1
read ip2 name2 alias2

echo "Your local host configuration:" >> "$CONFIG"

echo "$ip1 $name1 $alias1" >> "$CONFIG"
echo "$ip2 $name2 $alias2" >> "$CONFIG"

exec 0<&7 7<&−

echo −n "Enter comment or [ENTER] for no comment: "
read comment; echo $comment >> "$CONFIG"
rm "$TEMP"

michel ~/testdir> sysnotes.sh
Output will be saved in /var/tmp/sysconfig.out.
Saving root account info...
Enter comment or [ENTER] for no comment: hint for password: blue lagoon
Saving hosts information...
Enter comment or [ENTER] for no comment: in central DNS

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 107

michel ~/testdir> cat /var/tmp/sysconfig.out
Your root account info:
root:x:0:0:root:/root:/bin/bash
hint for password: blue lagoon
Your local host configuration:
127.0.0.1 localhost.localdomain localhost
192.168.42.1 tintagel.kingarthur.com tintagel
in central DNS

8.2.4.3. Closing file descriptors

Since child processes inherit open file descriptors, it is good practice to close a file descriptor when it is no
longer needed. This is done using the

exec fd<&−

syntax. In the above example, file descriptor 7, which has been assigned to standard input, is closed each time
the user needs to have access to the actual standard input device, usually the keyboard.

The following is a simple example redirecting only standard error to a pipe:

michel ~> cat listdirs.sh
#!/bin/bash

This script prints standard output unchanged, while standard error is
redirected for processing by awk.

INPUTDIR="$1"

exec 6>&1

ls "$INPUTDIR"/* 2>&1 >&6 6>&− \
 # Closes fd 6 for awk, but not for ls.

| awk 'BEGIN { FS=":" } { print "YOU HAVE NO ACCESS TO" $2 }' 6>&−

exec 6>&−

8.2.4.4. Here documents

Frequently, your script might call on another program or script that requires input. The here document
provides a way of instructing the shell to read input from the current source until a line containing only the
search string is found (no trailing blanks). All of the lines read up to that point are then used as the standard
input for a command.

The result is that you don't need to call on separate files; you can use shell−special characters, and it looks
nicer than a bunch of echo's:

michel ~> cat startsurf.sh
#!/bin/bash

This script provides an easy way for users to choose between browsers.

echo "These are the web browsers on this system:"

Start here document

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 108

cat << BROWSERS
mozilla
links
lynx
konqueror
opera
netscape
BROWSERS
End here document

echo −n "Which is your favorite? "
read browser

echo "Starting $browser, please wait..."
$browser &

michel ~> startsurf.sh
These are the web browsers on this system:
mozilla
links
lynx
konqueror
opera
netscape
Which is your favorite? opera
Starting opera, please wait...

Although we talk about a here document, it is supposed to be a construct within the same script. This is an
example that installs a package automatically, eventhough you should normally confirm:

#!/bin/bash

This script installs packages automatically, using yum.

if [$# −lt 1]; then
 echo "Usage: $0 package."
 exit 1
fi

yum install $1 << CONFIRM
y
CONFIRM

And this is how the script runs. When prompted with the "Is this ok [y/N]" string, the script answers "y"
automatically:

[root@picon bin]# ./install.sh tuxracer
Gathering header information file(s) from server(s)
Server: Fedora Linux 2 − i386 − core
Server: Fedora Linux 2 − i386 − freshrpms
Server: JPackage 1.5 for Fedora Core 2
Server: JPackage 1.5, generic
Server: Fedora Linux 2 − i386 − updates
Finding updated packages
Downloading needed headers
Resolving dependencies
Dependencies resolved
I will do the following:
[install: tuxracer 0.61−26.i386]
Is this ok [y/N]: EnterDownloading Packages

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 109

Running test transaction:
Test transaction complete, Success!
tuxracer 100 % done 1/1
Installed: tuxracer 0.61−26.i386
Transaction(s) Complete

8.3. Summary

In this chapter, we learned how to provide user comments and how to prompt for user input. This is usually
done using the echo/read combination. We also discussed how files can be used as input and output using file
descriptors and redirection, and how this can be combined with getting input from the user.

We stressed the importance of providing ample message for the users of our scripts. As always when others
use your scripts, it is better to give too much information than not enough. Here documents is a type of shell
construct that allows creation of lists, holding choices for the users. This construct can also be used to execute
otherwise interactive tasks in the background, without intervention.

8.4. Exercises

These exercises are practical applications of the constructs discussed in this chapter. When writing the scripts,
you may test by using a test directory that does not contain too much data. Write each step, then test that
portion of code, rather than writing everything at once.

Write a script that asks for the user's age. If it is equal to or higher than 16, print a message saying that
this user is allowed to drink alcohol. If the user's age is below 16, print a message telling the user how
many years he or she has to wait before legally being allowed to drink.

As an extra, calculate how much beer an 18+ user has drunk statistically (100 liters/year) and print
this information for the user.

1.

Write a script that takes one file as an argument. Use a here document that presents the user with a
couple of choices for compressing the file. Possible choices could be gzip, bzip2, compress and zip.

2.

Write a script called homebackup that automates tar so the person executing the script always uses
the desired options (cvp) and backup destination directory (/var/backups) to make a backup of
his or her home directory. Implement the following features:

Test for the number of arguments. The script should run without arguments. If any arguments
are present, exit after printing a usage message.

♦

Determine whether the backups directory has enough free space to hold the backup.♦
Ask the user whether a full or an incremental backup is wanted. If the user does not have a
full backup file yet, print a message that a full backup will be taken. In case of an incremental
backup, only do this if the full backup is not older than a week.

♦

Compress the backup using any compression tool. Inform the user that the script is doing this,
because it might take some time, during which the user might start worrying if no output
appears on the screen.

♦

Print a message informing the user about the size of the compressed backup.♦
See info tar or Introduction to Linux, chapter 9: "Preparing your data" for background information.

3.

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 110

http://tille.soti.org/training/tldp/c4540.html#sect_09_01_01

Write a script called simple−useradd.sh that adds a local user to the system. This script should:

Take only one argument, or else exit after printing a usage message.♦
Check /etc/passwd and decide on the first free user ID. Print a message containing this
ID.

♦

Create a private group for this user, checking the /etc/group file. Print a message
containing the group ID.

♦

Gather information from the operator user: a comment describing this user, choice from a list
of shells (test for acceptability, else exit printing a message), expiration date for this account,
extra groups of which the new user should be a member.

♦

With the obtained information, add a line to /etc/passwd, /etc/group and
/etc/shadow; create the user's home directory (with correct permissions!); add the user to
the desired secondary groups.

♦

Set the password for this user to a default known string.♦

4.

Rewrite the script from Section 7.2.1.4 so that it reads input from the user instead of taking it from the
first argument.

5.

Bash Guide for Beginners

Chapter 8. Writing interactive scripts 111

Chapter 9. Repetitive tasks

Upon completion of this chapter, you will be able to

Use for, while and until loops, and decide which loop fits which occasion.♦
Use the break and continue Bash built−ins.♦
Write scripts using the select statement.♦
Write scripts that take a variable number of arguments.♦

9.1. The for loop

9.1.1. How does it work?

The for loop is the first of the three shell looping constructs. This loop allows for specification of a list of
values. A list of commands is executed for each value in the list.

The syntax for this loop is:

for NAME [in LIST]; do COMMANDS; done

If [in LIST] is not present, it is replaced with in $@ and for executes the COMMANDS once for each
positional parameter that is set (see Section 3.2.5 and Section 7.2.1.2).

The return status is the exit status of the last command that executes. If no commands are executed because
LIST does not expand to any items, the return status is zero.

NAME can be any variable name, although i is used very often. LIST can be any list of words, strings or
numbers, which can be literal or generated by any command. The COMMANDS to execute can also be any
operating system commands, script, program or shell statement. The first time through the loop, NAME is set
to the first item in LIST. The second time, its value is set to the second item in the list, and so on. The loop
terminates when NAME has taken on each of the values from LIST and no items are left in LIST.

9.1.2. Examples

9.1.2.1. Using command substitution for specifying LIST items

The first is a command line example, demonstrating the use of a for loop that makes a backup copy of each
.xml file. After issuing the command, it is safe to start working on your sources:

[carol@octarine ~/articles] ls *.xml
file1.xml file2.xml file3.xml

[carol@octarine ~/articles] ls *.xml > list

[carol@octarine ~/articles] for i in `cat list`; do cp "$i" "$i".bak ; done

[carol@octarine ~/articles] ls *.xml*
file1.xml file1.xml.bak file2.xml file2.xml.bak file3.xml file3.xml.bak

Chapter 9. Repetitive tasks 112

This one lists the files in /sbin that are just plain text files, and possibly scripts:

for i in `ls /sbin`; do file /sbin/$i | grep ASCII; done

9.1.2.2. Using the content of a variable to specify LIST items

The following is a specific application script for converting HTML files, compliant with a certain scheme, to
PHP files. The conversion is done by taking out the first 25 and the last 21 lines, replacing these with two
PHP tags that provide header and footer lines:

[carol@octarine ~/html] cat html2php.sh
#!/bin/bash
specific conversion script for my html files to php
LIST="$(ls *.html)"
for i in "$LIST"; do
 NEWNAME=$(ls "$i" | sed −e 's/html/php/')
 cat beginfile > "$NEWNAME"
 cat "$i" | sed −e '1,25d' | tac | sed −e '1,21d'| tac >> "$NEWNAME"
 cat endfile >> "$NEWNAME"
done

Since we don't do a line count here, there is no way of knowing the line number from which to start deleting
lines until reaching the end. The problem is solved using tac, which reverses the lines in a file.

9.2. The while loop

9.2.1. What is it?

The while construct allows for repetitive execution of a list of commands, as long as the command controlling
the while loop executes successfully (exit status of zero). The syntax is:

while CONTROL−COMMAND; do CONSEQUENT−COMMANDS; done

CONTROL−COMMAND can be any command(s) that can exit with a success or failure status. The
CONSEQUENT−COMMANDS can be any program, script or shell construct.

As soon as the CONTROL−COMMAND fails, the loop exits. In a script, the command following the done
statement is executed.

The return status is the exit status of the last CONSEQUENT−COMMANDS command, or zero if none was
executed.

9.2.2. Examples

9.2.2.1. Simple example using while

Here is an example for the impatient:

Bash Guide for Beginners

Chapter 9. Repetitive tasks 113

#!/bin/bash

This script opens 4 terminal windows.

i="0"

while [$i −lt 4]
do
xterm &
i=$[$i+1]
done

9.2.2.2. Nested while loops

The example below was written to copy pictures that are made with a webcam to a web directory. Every five
minutes a picture is taken. Every hour, a new directory is created, holding the images for that hour. Every day,
a new directory is created containing 24 subdirectories. The script runs in the background.

Figure 9−1. Nested while loops − picturesort.sh

Note the use of the true statement. This means: continue execution until we are forcibly interrupted (with kill
or Ctrl+C).

Bash Guide for Beginners

Chapter 9. Repetitive tasks 114

This small script can be used for simulation testing; it generates files:

#!/bin/bash

This generates a file every 5 minutes

while true; do
touch pic−`date +%s`.jpg
sleep 300
done

Note the use of the date command to generate all kinds of file and directory names.

9.2.2.3. Using keyboard input to control the while loop

This script can be interrupted by the user when a Ctrl+C sequence is entered:

#!/bin/bash

This script provides wisdom

FORTUNE=/usr/games/fortune

while true; do
echo "On which topic do you want advice?"
cat << topics
politics
startrek
kernelnewbies
sports
bofh−excuses
magic
love
literature
drugs
education
topics

echo
echo −n "Make your choice: "
read topic
echo
echo "Free advice on the topic of $topic: "
echo
$FORTUNE $topic
echo

done

A here document is used to present the user with possible choices. And again, the true test repeats the
commands from the CONSEQUENT−COMMANDS list over and over again.

9.2.2.4. Calculating an average

This script calculates the average of user input, which is tested before it is processed: if input is not within
range, a message is printed. If q is pressed, the loop exits:

Bash Guide for Beginners

Chapter 9. Repetitive tasks 115

#!/bin/bash

Calculate the average of a series of numbers.

SCORE="0"
AVERAGE="0"
SUM="0"
NUM="0"

while true; do

 echo −n "Enter your score [0−100%] ('q' for quit): "; read SCORE;

 if (("$SCORE" < "0")) || (("$SCORE" > "100")); then
 echo "Be serious. Common, try again: "
 elif ["$SCORE" == "q"]; then
 echo "Average rating: $AVERAGE%."
 break
 else
 SUM=$[$SUM + $SCORE]
 NUM=$[$NUM + 1]
 AVERAGE=$[$SUM / $NUM]
 fi

done

echo "Exiting."

Note how the variables in the last lines are left unquoted in order to do arithmetic.

9.3. The until loop

9.3.1. What is it?

The until loop is very similar to the while loop, except that the loop executes until the TEST−COMMAND
executes successfully. As long as this command fails, the loop continues. The syntax is the same as for the
while loop:

until TEST−COMMAND; do CONSEQUENT−COMMANDS; done

The return status is the exit status of the last command executed in the CONSEQUENT−COMMANDS list,
or zero if none was executed. TEST−COMMAND can, again, be any command that can exit with a success
or failure status, and CONSEQUENT−COMMANDS can be any UNIX command, script or shell construct.

As we already explained previously, the ";" may be replaced with one or more newlines wherever it appears.

9.3.2. Example

An improved picturesort.sh script (see Section 9.2.2.2), which tests for available disk space. If not
enough disk space is available, remove pictures from the previous months:

Bash Guide for Beginners

Chapter 9. Repetitive tasks 116

Figure 9−2. More nested while loops − safesort.sh

Note the initialization of the HOUR and DISKFULL variables and the use of options with ls and date in order
to obtain a correct listing for TOREMOVE.

9.4. I/0 redirection and loops

9.4.1. Input redirection

Instead of controlling a loop by testing the result of a command or by user input, you can specify a file from
which to read input that controls the loop. In such cases, read is often the controlling command. As long as
input lines are fed into the loop, execution of the loop commands continues. As soon as all the input lines are

Bash Guide for Beginners

Chapter 9. Repetitive tasks 117

read the loop exits.

Since the loop construct is considered to be one command structure (such as while TEST−COMMAND; do
CONSEQUENT−COMMANDS; done), the redirection should occur after the done statement, so that it
complies with the form

command < file

This kind of redirection also works with other kinds of loops.

9.4.2. Output redirection

In the example below, output of the find command is used as input for the read command controlling a while
loop:

[carol@octarine ~/testdir] cat archiveoldstuff.sh
#!/bin/bash

This script creates a subdirectory in the current directory, to which old
files are moved.
Might be something for cron (if slightly adapted) to execute weekly or
monthly.

ARCHIVENR=`date +%Y%m%d`
DESTDIR="$PWD/archive−$ARCHIVENR"

mkdir $DESTDIR

find $PWD −type f −a −mtime +5 | while read file
do
gzip "$file"; mv "$file".gz "$DESTDIR"
echo "$file archived"
done

Files are compressed before they are moved into the archive directory.

9.5. Break and continue

9.5.1. The break built−in

The break statement is used to exit the current loop before its normal ending. This is done when you don't
know in advance how many times the loop will have to execute, for instance because it is dependent on user
input.

The example below demonstrates a while loop that can be interrupted. This is a slightly improved version of
the wisdom.sh script from Section 9.2.2.3.

#!/bin/bash

This script provides wisdom
You can now exit in a decent way.

Bash Guide for Beginners

Chapter 9. Repetitive tasks 118

FORTUNE=/usr/games/fortune

while true; do
echo "On which topic do you want advice?"
echo "1. politics"
echo "2. startrek"
echo "3. kernelnewbies"
echo "4. sports"
echo "5. bofh−excuses"
echo "6. magic"
echo "7. love"
echo "8. literature"
echo "9. drugs"
echo "10. education"
echo

echo −n "Enter your choice, or 0 for exit: "
read choice
echo

case $choice in
 1)
 $FORTUNE politics
 ;;
 2)
 $FORTUNE startrek
 ;;
 3)
 $FORTUNE kernelnewbies
 ;;
 4)
 echo "Sports are a waste of time, energy and money."
 echo "Go back to your keyboard."
 echo −e "\t\t\t\t −− \"Unhealthy is my middle name\" Soggie."
 ;;
 5)
 $FORTUNE bofh−excuses
 ;;
 6)
 $FORTUNE magic
 ;;
 7)
 $FORTUNE love
 ;;
 8)
 $FORTUNE literature
 ;;
 9)
 $FORTUNE drugs
 ;;
 10)
 $FORTUNE education
 ;;
 0)
 echo "OK, see you!"
 break
 ;;
 *)
 echo "That is not a valid choice, try a number from 0 to 10."
 ;;
esac

Bash Guide for Beginners

Chapter 9. Repetitive tasks 119

done

Mind that break exits the loop, not the script. This can be demonstrated by adding an echo command at the
end of the script. This echo will also be executed upon input that causes break to be executed (when the user
types "0").

In nested loops, break allows for specification of which loop to exit. See the Bash info pages for more.

9.5.2. The continue built−in

The continue statement resumes iteration of an enclosing for, while, until or select loop.

When used in a for loop, the controlling variable takes on the value of the next element in the list. When used
in a while or until construct, on the other hand, execution resumes with TEST−COMMAND at the top of the
loop.

9.5.3. Examples

In the following example, file names are converted to lower case. If no conversion needs to be done, a
continue statement restarts execution of the loop. These commands don't eat much system resources, and
most likely, similar problems can be solved using sed and awk. However, it is useful to know about this kind
of construction when executing heavy jobs, that might not even be necessary when tests are inserted at the
correct locations in a script, sparing system resources.

[carol@octarine ~/test] cat tolower.sh
#!/bin/bash

This script converts all file names containing upper case characters into file# names containing only lower cases.

LIST="$(ls)"

for name in "$LIST"; do

if [["$name" != *[[:upper:]]*]]; then
continue
fi

ORIG="$name"
NEW=`echo $name | tr 'A−Z' 'a−z'`

mv "$ORIG" "$NEW"
echo "new name for $ORIG is $NEW"
done

This script has at least one disadvantage: it overwrites existing files. The noclobber option to Bash is only
useful when redirection occurs. The −b option to the mv command provides more security, but is only safe in
case of one accidental overwrite, as is demonstrated in this test:

[carol@octarine ~/test] rm *

[carol@octarine ~/test] touch test Test TEST

[carol@octarine ~/test] bash −x tolower.sh
++ ls

Bash Guide for Beginners

Chapter 9. Repetitive tasks 120

+ LIST=test
Test
TEST
+ [[test != *[[:upper:]]*]]
+ continue
+ [[Test != *[[:upper:]]*]]
+ ORIG=Test
++ echo Test
++ tr A−Z a−z
+ NEW=test
+ mv −b Test test
+ echo 'new name for Test is test'
new name for Test is test
+ [[TEST != *[[:upper:]]*]]
+ ORIG=TEST
++ echo TEST
++ tr A−Z a−z
+ NEW=test
+ mv −b TEST test
+ echo 'new name for TEST is test'
new name for TEST is test

[carol@octarine ~/test] ls −a
./ ../ test test~

The tr is part of the textutils package; it can perform all kinds of character transformations.

9.6. Making menus with the select built−in

9.6.1. General

9.6.1.1. Use of select

The select construct allows easy menu generation. The syntax is quite similar to that of the for loop:

select WORD [in LIST]; do RESPECTIVE−COMMANDS; done

LIST is expanded, generating a list of items. The expansion is printed to standard error; each item is preceded
by a number. If in LIST is not present, the positional parameters are printed, as if in $@ would have been
specified. LIST is only printed once.

Upon printing all the items, the PS3 prompt is printed and one line from standard input is read. If this line
consists of a number corresponding to one of the items, the value of WORD is set to the name of that item. If
the line is empty, the items and the PS3 prompt are displayed again. If an EOF (End Of File) character is
read, the loop exits. Since most users don't have a clue which key combination is used for the EOF sequence,
it is more user−friendly to have a break command as one of the items. Any other value of the read line will
set WORD to be a null string.

The read line is saved in the REPLY variable.

The RESPECTIVE−COMMANDS are executed after each selection until the number representing the
break is read. This exits the loop.

Bash Guide for Beginners

Chapter 9. Repetitive tasks 121

9.6.1.2. Examples

This is a very simple example, but as you can see, it is not very user−friendly:

[carol@octarine testdir] cat private.sh
#!/bin/bash

echo "This script can make any of the files in this directory private."
echo "Enter the number of the file you want to protect:"

select FILENAME in *;
do
 echo "You picked $FILENAME ($REPLY), it is now only accessible to you."
 chmod go−rwx "$FILENAME"
done

[carol@octarine testdir] ./private.sh
This script can make any of the files in this directory private.
Enter the number of the file you want to protect:
1) archive−20030129
2) bash
3) private.sh
#? 1
You picked archive−20030129 (1)
#?

Setting the PS3 prompt and adding a possibility to quit makes it better:

#!/bin/bash

echo "This script can make any of the files in this directory private."
echo "Enter the number of the file you want to protect:"

PS3="Your choice: "
QUIT="QUIT THIS PROGRAM − I feel safe now."
touch "$QUIT"

select FILENAME in *;
do
 case $FILENAME in
 "$QUIT")
 echo "Exiting."
 break
 ;;
 *)
 echo "You picked $FILENAME ($REPLY)"
 chmod go−rwx "$FILENAME"
 ;;
 esac
done
rm "$QUIT"

9.6.2. Submenus

Any statement within a select construct can be another select loop, enabling (a) submenu(s) within a menu.

Bash Guide for Beginners

Chapter 9. Repetitive tasks 122

By default, the PS3 variable is not changed when entering a nested select loop. If you want a different prompt
in the submenu, be sure to set it at the appropriate time(s).

9.7. The shift built−in

9.7.1. What does it do?

The shift command is one of the Bourne shell built−ins that comes with Bash. This command takes one
argument, a number. The positional parameters are shifted to the left by this number, N. The positional
parameters from N+1 to $# are renamed to variable names from $1 to $# − N+1.

Say you have a command that takes 10 arguments, and N is 4, then $4 becomes $1, $5 becomes $2 and so
on. $10 becomes $7 and the original $1, $2 and $3 are thrown away.

If N is zero or greater than $# (the total number of arguments, see Section 7.2.1.2). If N is not present, it is
assumed to be 1. The return status is zero unless N is greater than $# or less than zero; otherwise it is
non−zero.

9.7.2. Examples

A shift statement is typically used when the number of arguments to a command is not known in advance, for
instance when users can give as many arguments as they like. In such cases, the arguments are usually
processed in a while loop with a test condition of (($#)). This condition is true as long as the number of
arguments is greater than zero. The $1 variable and the shift statement process each argument. The number of
arguments is reduced each time shift is executed and eventually becomes zero, upon which the while loop
exits.

The example below, cleanup.sh, uses shift statements to process each file in the list generated by find:

#!/bin/bash

This script can clean up files that were last accessed over 365 days ago.

USAGE="Usage: $0 dir1 dir2 dir3 ... dirN"

if ["$#" == "0"]; then
 echo "$USAGE"
 exit 1
fi

while (("$#")); do

if [["$(ls $1)" == ""]]; then
 echo "Empty directory, nothing to be done."
 shift
 else
 find $1 −type f −a −atime +365 −exec rm −i {} \;
fi

shift

Bash Guide for Beginners

Chapter 9. Repetitive tasks 123

done

In the next example, we modified the script from Section 8.2.4.4 so that it accepts multiple packages to install
at once:

#!/bin/bash
if [$# −lt 1]; then
 echo "Usage: $0 package(s)"
 exit 1
fi
while (($#)); do
 yum install $1 << CONFIRM
 y
 CONFIRM
 shift
done

9.8. Summary

In this chapter, we discussed how repetitive commands can be incorporated in loop constructs. Most common
loops are built using the for, while or until statements, or a combination of these commands. The for loop
executes a task a defined number of times. If you don't know how many times a command should execute, use
either until or while to specify when the loop should end.

Loops can be interrupted or reiterated using the break and continue statements.

A file can be used as input for a loop using the input redirection operator, loops can also read output from
commands that is fed into the loop using a pipe.

The select construct is used for printing menus in interactive scripts. Looping through the command line
arguments to a script can be done using the shift statement.

9.9. Exercises

Remember: when building scripts, work in steps and test each step before incorporating it in your script.

Create a script that will take a (recursive) copy of files in /etc so that a beginning system
administrator can edit files without fear.

1.

Write a script that takes exactly one argument, a directory name. If the number of arguments is more
or less than one, print a usage message. If the argument is not a directory, print another message. For
the given directory, print the five biggest files and the five files that were most recently modified.

2.

Can you explain why it is so important to put the variables in between double quotes in the example
from Section 9.4.2?

3.

Write a script similar to the one in Section 9.5.1, but think of a way of quitting after the user has
executed 3 loops.

4.

Think of a better solution than move −b for the script from Section 9.5.3 to prevent overwriting of
existing files. For instance, test whether or not a file exists. Don't do unnecessary work!

5.

Bash Guide for Beginners

Chapter 9. Repetitive tasks 124

Rewrite the whichdaemon.sh script from Section 7.2.4, so that it:

Prints a list of servers to check, such as Apache, the SSH server, the NTP daemon, a name
daemon, a power management daemon, and so on.

♦

For each choice the user can make, print some sensible information, like the name of the web
server, NTP trace information, and so on.

♦

Optionally, build in a possibility for users to check other servers than the ones listed. For such
cases, check that at least the given process is running.

♦

Review the script from Section 9.2.2.4. Note how character input other than q is processed.
Rebuild this script so that it prints a message if characters are given as input.

♦

6.

Bash Guide for Beginners

Chapter 9. Repetitive tasks 125

Chapter 10. More on variables

In this chapter, we will discuss the advanced use of variables and arguments. Upon
completion, you will be able to:

Declare and use an array of variables♦
Specify the sort of variable you want to use♦
Make variables read−only♦
Use set to assign a value to a variable♦

10.1. Types of variables

10.1.1. General assignment of values

As we already saw, Bash understands many different kinds of variables or parameters. Thus far, we haven't
bothered much with what kind of variables we assigned, so our variables could hold any value that we
assigned to them. A simple command line example demonstrates this:

[bob in ~] VARIABLE=12

[bob in ~] echo $VARIABLE
12

[bob in ~] VARIABLE=string

[bob in ~] echo $VARIABLE
string

There are cases when you want to avoid this kind of behavior, for instance when handling telephone and other
numbers. Apart from integers and variables, you may also want to specify a variable that is a constant. This is
often done at the beginning of a script, when the value of the constant is declared. After that, there are only
references to the constant variable name, so that when the constant needs to be changed, it only has to be done
once. A variable may also be a series of variables of any type, a so−called array of variables (VAR0VAR1,
VAR2, ... VARN).

10.1.2. Using the declare built−in

Using a declare statement, we can limit the value assignment to variables.

The syntax for declare is the following:

declare OPTION(s) VARIABLE=value

The following options are used to determine the type of data the variable can hold and to assign it attributes:

Table 10−1. Options to the declare built−in

Option Meaning

Chapter 10. More on variables 126

−a Variable is an array.

−f Use function names only.

−i
The variable is to be treated as an integer; arithmetic evaluation is performed when the
variable is assigned a value (see Section 3.4.6).

−p
Display the attributes and values of each variable. When −p is used, additional options are
ignored.

−r
Make variables read−only. These variables cannot then be assigned values by subsequent
assignment statements, nor can they be unset.

−t Give each variable the trace attribute.

−x Mark each variable for export to subsequent commands via the environment.

Using + instead of − turns off the attribute instead. When used in a function, declare creates local variables.

The following example shows how assignment of a type to a variable influences the value.

[bob in ~] declare −i VARIABLE=12

[bob in ~] VARIABLE=string

[bob in ~] echo $VARIABLE
0

[bob in ~] declare −p VARIABLE
declare −i VARIABLE="0"

Note that Bash has an option to declare a numeric value, but none for declaring string values. This is because,
by default, if no specifications are given, a variable can hold any type of data:

[bob in ~] OTHERVAR=blah

[bob in ~] declare −p OTHERVAR
declare −− OTHERVAR="blah"

As soon as you restrict assignment of values to a variable, it can only hold that type of data. Possible
restrictions are either integer, constant or array.

See the Bash info pages for information on return status.

10.1.3. Constants

In Bash, constants are created by making a variable read−only. The readonly built−in marks each specified
variable as unchangeable. The syntax is:

readonly OPTIONVARIABLE(s)

The values of these variables can then no longer be changed by subsequent assignment. If the −f option is
given, each variable refers to a shell function; see Chapter 11. If −a is specified, each variable refers to an
array of variables. If no arguments are given, or if −p is supplied, a list of all read−only variables is displayed.
Using the −p option, the output can be reused as input.

Bash Guide for Beginners

Chapter 10. More on variables 127

The return status is zero, unless an invalid option was specified, one of the variables or functions does not
exist, or −f was supplied for a variable name instead of for a function name.

[bob in ~] readonly TUX=penguinpower

[bob in ~] TUX=Mickeysoft
bash: TUX: readonly variable

10.2. Array variables

10.2.1. Creating arrays

An array is a variable containing multiple values. Any variable may be used as an array. There is no
maximum limit to the size of an array, nor any requirement that member variables be indexed or assigned
contiguously. Arrays are zero−based: the first element is indexed with the number 0.

Indirect declaration is done using the following syntax to declare a variable:

ARRAY[INDEXNR]=value

The INDEXNR is treated as an arithmetic expression that must evaluate to a positive number.

Explicit declaration of an array is done using the declare built−in:

declare −aARRAYNAME

A declaration with an index number will also be accepted, but the index number will be ignored. Attributes to
the array may be specified using the declare and readonly built−ins. Attributes apply to all variables in the
array; you can't have mixed arrays.

Array variables may also be created using compound assignments in this format:

ARRAY=(value1 value2 ... valueN)

Each value is then in the form of [indexnumber=]string. The index number is optional. If it is supplied, that
index is assigned to it; otherwise the index of the element assigned is the number of the last index that was
assigned, plus one. This format is accepted by declare as well. If no index numbers are supplied, indexing
starts at zero.

Adding missing or extra members in an array is done using the syntax:

ARRAYNAME[indexnumber]=value

Remember that the read built−in provides the −a option, which allows for reading and assigning values for
member variables of an array.

Bash Guide for Beginners

Chapter 10. More on variables 128

10.2.2. Dereferencing the variables in an array

In order to refer to the content of an item in an array, use curly braces. This is necessary, as you can see from
the following example, to bypass the shell interpretation of expansion operators. If the index number is @ or
*, all members of an array are referenced.

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${ARRAY[*]}
one two three

[bob in ~] echo $ARRAY[*]
one[*]

[bob in ~] echo ${ARRAY[2]}
three

[bob in ~] ARRAY[3]=four

[bob in ~] echo ${ARRAY[*]}
one two three four

Referring to the content of a member variable of an array without providing an index number is the same as
referring to the content of the first element, the one referenced with index number zero.

10.2.3. Deleting array variables

The unset built−in is used to destroy arrays or member variables of an array:

[bob in ~] unset ARRAY[1]

[bob in ~] echo ${ARRAY[*]}
one three four

[bob in ~] unset ARRAY

[bob in ~] echo ${ARRAY[*]}
<−−no output−−>

10.2.4. Examples of arrays

Practical examples of the usage of arrays are hard to find. You will find plenty of scripts that don't really do
anything on your system but that do use arrays to calculate mathematical series, for instance. And that would
be one of the more interesting examples...most scripts just show what you can do with an array in an
oversimplified and theoretical way.

The reason for this dullness is that arrays are rather complex structures. You will find that most practical
examples for which arrays could be used are already implemented on your system using arrays, however on a
lower level, in the C programming language in which most UNIX commands are written. A good example is
the Bash history built−in command. Those readers who are interested might check the built−ins directory
in the Bash source tree and take a look at fc.def, which is processed when compiling the built−ins.

Another reason good examples are hard to find is that not all shells support arrays, so they break
compatibility.

Bash Guide for Beginners

Chapter 10. More on variables 129

After long days of searching, I finally found this example operating at an Internet provider. It distributes
Apache web server configuration files onto hosts in a web farm:

#!/bin/bash

$Id: chap10.xml,v 1.3 2004/07/09 05:39:30 tille Exp $
$Log: chap10.xml,v $
Revision 1.3 2004/07/09 05:39:30 tille
Added tracer image 1x1 pixel http://tille.soti.org/images/blank−bash.png, added textobjects for all pictures, fixed wrong links in index, made signal list more clear, added front cover from fultus publishing, index, more markup in screen sections (sort of forgot chapters 6−end previously).
#
Revision 1.5 2004/06/24 14:02:48 tille
dded tracer image
#
Revision 1.4 2004/06/15 08:47:12 tille
more markup, index
#
Revision 1.3 2004/05/22 13:34:18 tille
review for fultus
#
Revision 1.2 2004/04/26 13:24:41 tille
updates by tabatha
#
Revision 1.1.1.1 2004/02/11 16:59:50 tille
initiele bash import
#
Revision 1.3 2003/02/05 09:52:53 mbounine
httpd restarting added.
#
Revision 1.2 2003/02/05 08:11:32 mbounine
Bug fixes.
#
Revision 1.1 2003/02/04 15:41:35 mbounine
Script for syncing httpd config between web farm hosts.
Initial release.
#
if [$(whoami) != 'root']; then
 echo "Must be root to run $0"
 exit 1;
fi
if [−z $1]; then
 echo "Usage: $0 </path/to/httpd.conf>"
 exit 1
fi

httpd_conf_new=$1
httpd_conf_path="/usr/local/apache/conf"
login=htuser

farm_hosts=(web03 web04 web05 web06 web07)

for i in ${farm_hosts[@]}; do
 su $login −c "scp $httpd_conf_new ${i}:${httpd_conf_path}"
 su $login −c "ssh $i sudo /usr/local/apache/bin/apachectl graceful"

done
exit 0

First two tests are performed to check whether the correct user is running the script with the correct
arguments. The names of the hosts that need to be configured are listed in the array farm_hosts. Then all
these hosts are provided with the Apache configuration file, after which the daemon is restarted. Note the use

Bash Guide for Beginners

Chapter 10. More on variables 130

of commands from the Secure Shell suite, encrypting the connections to remote hosts.

Thanks, Eugene and colleague, for this contribution.

Dan Richter contributed the following example. This is the problem he was confronted with:

"...In my company, we have demos on our web site, and every week someone has to test all of them. So I have
a cron job that fills an array with the possible candidates, uses date +%W to find the week of the year, and does
a modulo operation to find the correct index. The lucky person gets notified by e−mail."

And this was his way of solving it:

#!/bin/bash
This is get−tester−address.sh
#
First, we test whether bash supports arrays.
(Support for arrays was only added recently.)
#
whotest[0]='test' || (echo 'Failure: arrays not supported in this version of
bash.' && exit 2)

#
Our list of candidates. (Feel free to add or
remove candidates.)
#
wholist=(
 'Bob Smith <bob@example.com>'
 'Jane L. Williams <jane@example.com>'
 'Eric S. Raymond <esr@example.com>'
 'Larry Wall <wall@example.com>'
 'Linus Torvalds <linus@example.com>'
)
#
Count the number of possible testers.
(Loop until we find an empty string.)
#
count=0
while ["x${wholist[count]}" != "x"]
do
 count=$(($count + 1))
done

#
Now we calculate whose turn it is.
#
week=`date '+%W'` # The week of the year (0..53).
week=${week#0} # Remove possible leading zero.

let "index = $week % $count" # week modulo count = the lucky person

email=${wholist[index]} # Get the lucky person's e−mail address.

echo $email # Output the person's e−mail address.

This script is then used in other scripts, such as this one, which uses a here document:

email=`get−tester−address.sh` # Find who to e−mail.
hostname=`hostname` # This machine's name.

Bash Guide for Beginners

Chapter 10. More on variables 131

#
Send e−mail to the right person.
#
mail $email −s '[Demo Testing]' <<EOF
The lucky tester this week is: $email

Reminder: the list of demos is here:
 http://web.example.com:8080/DemoSites

(This e−mail was generated by $0 on ${hostname}.)
EOF

10.3. Operations on variables

10.3.1. Arithmetic on variables

We discussed this already in Section 3.4.6.

10.3.2. Length of a variable

Using the ${#VAR} syntax will calculate the number of characters in a variable. If VAR is "*" or "@", this
value is substituted with the number of positional parameters or number of elements in an array in general.
This is demonstrated in the example below:

[bob in ~] echo $SHELL
/bin/bash

[bob in ~] echo ${#SHELL}
9

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${#ARRAY}
3

10.3.3. Transformations of variables

10.3.3.1. Substitution

${VAR:−WORD}

If VAR is not defined or null, the expansion of WORD is substituted; otherwise the value of VAR is substituted:

[bob in ~] echo ${TEST:−test}
test

[bob in ~] echo $TEST

[bob in ~] export TEST=a_string

Bash Guide for Beginners

Chapter 10. More on variables 132

[bob in ~] echo ${TEST:−test}
a_string

[bob in ~] echo ${TEST2:−$TEST}
a_string

This form is often used in conditional tests, for instance in this one:

[−z "${COLUMNS:−}"] && COLUMNS=80

It is a shorter notation for

if [−z "${COLUMNS:−}"]; then
COLUMNS=80
fi

See Section 7.1.2.3 for more information about this type of condition testing.

If the hyphen (−) is replaced with the equal sign (=), the value is assigned to the parameter if it does not exist:

[bob in ~] echo $TEST2

[bob in ~] echo ${TEST2:=$TEST}
a_string

[bob in ~] echo $TEST2
a_string

The following syntax tests the existence of a variable. If it is not set, the expansion of WORD is printed to
standard out and non−interactive shells quit. A demonstration:

[bob in ~] cat vartest.sh
#!/bin/bash

This script tests whether a variable is set. If not,
it exits printing a message.

echo ${TESTVAR:?"There's so much I still wanted to do..."}
echo "TESTVAR is set, we can proceed."

[bob in testdir] ./vartest.sh
./vartest.sh: line 6: TESTVAR: There's so much I still wanted to do...

[bob in testdir] export TESTVAR=present

[bob in testdir] ./vartest.sh
present
TESTVAR is set, we can proceed.

Using "+" instead of the exclamation mark sets the variable to the expansion of WORD; if it does not exist,
nothing happens.

Bash Guide for Beginners

Chapter 10. More on variables 133

10.3.3.2. Removing substrings

To strip a number of characters, equal to OFFSET, from a variable, use this syntax:

${VAR:OFFSET:LENGTH}

The LENGTH parameter defines how many characters to keep, starting from the first character after the offset
point. If LENGTH is omitted, the remainder of the variable content is taken:

[bob in ~] export STRING="thisisaverylongname"

[bob in ~] echo ${STRING:4}
isaverylongname

[bob in ~] echo ${STRING:6:5}
avery

${VAR#WORD}

and

${VAR##WORD}

These constructs are used for deleting the pattern matching the expansion of WORD in VAR. WORD is expanded
to produce a pattern just as in file name expansion. If the pattern matches the beginning of the expanded value
of VAR, then the result of the expansion is the expanded value of VAR with the shortest matching pattern ("#")
or the longest matching pattern (indicated with "##").

If VAR is * or @, the pattern removal operation is applied to each positional parameter in turn, and the
expansion is the resultant list.

If VAR is an array variable subscribed with "*" or "*", the pattern removal operation is applied to each
member of the array in turn, and the expansion is the resultant list. This is shown in the examples below:

[bob in ~] echo ${ARRAY[*]}
one two one three one four

[bob in ~] echo ${ARRAY[*]#one}
two three four

[bob in ~] echo ${ARRAY[*]#t}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]#t*}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]##t*}
one one one four

The opposite effect is obtained using "%" and "%%", as in this example below. WORD should match a trailing
portion of string:

[bob in ~] echo $STRING
thisisaverylongname

Bash Guide for Beginners

Chapter 10. More on variables 134

[bob in ~] echo ${STRING%name}
thisisaverylong

10.3.3.3. Replacing parts of variable names

This is done using the

${VAR/PATTERN/STRING}

or

${VAR//PATTERN/STRING}

syntax. The first form replaces only the first match, the second replaces all matches of PATTERN with
STRING:

[bob in ~] echo ${STRING/name/string}
thisisaverylongstring

More information can be found in the Bash info pages.

10.4. Summary

Normally, a variable can hold any type of data, unless variables are declared explicitly. Constant variables are
set using the readonly built−in command.

An array holds a set of variables. If a type of data is declared, then all elements in the array will be set to hold
only this type of data.

Bash features allow for substitution and transformation of variables "on the fly". Standard operations include
calculating the length of a variable, arithmetic on variables, substituting variable content and substituting part
of the content.

10.5. Exercises

Here are some brain crackers:

Write a script that does the following:

Display the name of the script being executed.♦
Display the first, third and tenth argument given to the script.♦
Display the total number of arguments passed to the script.♦
If there were more than three positional parameters, use shift to move all the values 3 places
to the left.

♦

Print all the values of the remaining arguments.♦

1.

Bash Guide for Beginners

Chapter 10. More on variables 135

Print the number of arguments.♦
Test with zero, one, three and over ten arguments.
Write a script that implements a simple web browser (in text mode), using wget and links −dump to
display HTML pages to the user. The user has 3 choices: enter a URL, enter b for back and q to quit.
The last 10 URLs entered by the user are stored in an array, from which the user can restore the URL
by using the back functionality.

2.

Bash Guide for Beginners

Chapter 10. More on variables 136

Chapter 11. Functions

In this chapter, we will discuss

What functions are♦
Creation and displaying of functions from the command line♦
Functions in scripts♦
Passing arguments to functions♦
When to use functions♦

11.1. Introduction

11.1.1. What are functions?

Shell functions are a way to group commands for later execution, using a single name for this group, or
routine. The name of the routine must be unique within the shell or script. All the commands that make up a
function are executed like regular commands. When calling on a function as a simple command name, the list
of commands associated with that function name is executed. A function is executed within the shell in which
it has been declared: no new process is created to interpret the commands.

Special built−in commands are found before shell functions during command lookup. The special built−ins
are: break, :, ., continue, eval, exec, exit, export, readonly, return, set, shift, trap and unset.

11.1.2. Function syntax

Functions either use the syntax

function FUNCTION { COMMANDS; }

or

FUNCTION () { COMMANDS; }

Both define a shell function FUNCTION. The use of the built−in command function is optional; however, if
it is not used, parentheses are needed.

The commands listed between curly braces make up the body of the function. These commands are executed
whenever FUNCTION is specified as the name of a command. The exit status is the exit status of the last
command executed in the body.

Common mistakes

The curly braces must be separated from the body by spaces, otherwise they are interpreted in the wrong
way.

The body of a function should end in a semicolon or a newline.

Chapter 11. Functions 137

11.1.3. Positional parameters in functions

Functions are like mini−scripts: they can accept parameters, they can use variables only known within the
function (using the local shell built−in) and they can return values to the calling shell.

A function also has a system for interpreting positional parameters. However, the positional parameters passed
to a function are not the same as the ones passed to a command or script.

When a function is executed, the arguments to the function become the positional parameters during its
execution. The special parameter # that expands to the number of positional parameters is updated to reflect
the change. Positional parameter 0 is unchanged. The Bash variable FUNCNAME is set to the name of the
function, while it is executing.

If the return built−in is executed in a function, the function completes and execution resumes with the next
command after the function call. When a function completes, the values of the positional parameters and the
special parameter # are restored to the values they had prior to the function's execution. If a numeric argument
is given to return, that status is returned. A simple example:

[lydia@cointreau ~/test] cat showparams.sh
#!/bin/bash

echo "This script demonstrates function arguments."
echo

echo "Positional parameter 1 for the script is $1."
echo

test ()
{
echo "Positional parameter 1 in the function is $1."
RETURN_VALUE=$?
echo "The exit code of this function is $RETURN_VALUE."
}

test other_param

[lydia@cointreau ~/test] ./showparams.sh parameter1
This script demonstrates function arguments.

Positional parameter 1 for the script is parameter1.

Positional parameter 1 in the function is other_param.
The exit code of this function is 0.

[lydia@cointreau ~/test]

Note that the return value or exit code of the function is often storen in a variable, so that it can be probed at a
later point. The init scripts on your system often use the technique of probing the RETVAL variable in a
conditional test, like this one:

if [$RETVAL −eq 0]; then
 <start the daemon>

Or like this example from the /etc/init.d/amd script, where Bash's optimazation features are used:

Bash Guide for Beginners

Chapter 11. Functions 138

[$RETVAL = 0] && touch /var/lock/subsys/amd

The commands after && are only executed when the test proves to be true; this is a shorter way to represent
an if/then/fi structure.

The return code of the function is often used as exit code of the entire script. You'll see a lot of initscripts
ending in something like exit $RETVAL.

11.1.4. Displaying functions

All functions known by the current shell can be displayed using the set built−in without options. Functions are
retained after they are used, unless they are unset after use. The which command also displays functions:

[lydia@cointreau ~] which zless
zless is a function
zless ()
{
 zcat "$@" | "$PAGER"
}

[lydia@cointreau ~] echo $PAGER
less

This is the sort of function that is typically configured in the user's shell resource configuration files.
Functions are more flexible than aliases and provide a simple and easy way of adapting the user environment.

Here's one for DOS users:

dir ()
{
 ls −F −−color=auto −lF −−color=always "$@" | less −r
}

11.2. Examples of functions in scripts

11.2.1. Recycling

There are plenty of scripts on your system that use functions as a structured way of handling series of
commands. On some Linux systems, for instance, you will find the /etc/rc.d/init.d/functions
definition file, which is sourced in all init scripts. Using this method, common tasks such as checking if a
process runs, starting or stopping a daemon and so on, only have to be written once, in a general way. If the
same task is needed again, the code is recycled. From this functions file the checkpid function:

Check if $pid (could be plural) are running
checkpid() {
 local i

 for i in $* ; do
 [−d "/proc/$i"] && return 0
 done
 return 1

Bash Guide for Beginners

Chapter 11. Functions 139

}

This function is reused in the same script in other functions, which are reused in other scripts. The daemon
function, for instance, is used in the majority of the startup scripts for starting a server process (on machines
that use this system).

11.2.2. Setting the path

This section might be found in your /etc/profile file. The function pathmunge is defined and then used
to set the path for the root and other users:

pathmunge () {
 if ! echo $PATH | /bin/egrep −q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
}

Path manipulation
if [`id −u` = 0]; then
 pathmunge /sbin
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
fi

pathmunge /usr/X11R6/bin after

unset pathmunge

The function takes its first argument to be a path name. If this path name is not yet in the current path, it is
added. The second argument to the function defines if the path will be added in front or after the current PATH
definition.

Normal users only get /usr/X11R6/bin added to their paths, while root gets a couple of extra directories
containing system commands. After being used, the function is unset so that it is not retained.

11.2.3. Remote backups

The following example is one that I use for making backups of the files for my books. It uses SSH keys for
enabling the remote connection. Two functions are defined, buplinux and bupbash, that each make a .tar
file, which is then compressed and sent to a remote server. After that, the local copy is cleaned up.

On Sunday, only bupbash is executed.

#/bin/bash

LOGFILE="/nethome/tille/log/backupscript.log"
echo "Starting backups for `date`" >> "$LOGFILE"

buplinux()
{
DIR="/nethome/tille/xml/db/linux−basics/"

Bash Guide for Beginners

Chapter 11. Functions 140

TAR="Linux.tar"
BZIP="$TAR.bz2"
SERVER="rincewind"
RDIR="/var/www/intra/tille/html/training/"

cd "$DIR"
tar cf "$TAR" src/*.xml src/images/*.png src/images/*.eps
echo "Compressing $TAR..." >> "$LOGFILE"
bzip2 "$TAR"
echo "...done." >> "$LOGFILE"
echo "Copying to $SERVER..." >> "$LOGFILE"
scp "$BZIP" "$SERVER:$RDIR" > /dev/null 2>&1
echo "...done." >> "$LOGFILE"
echo −e "Done backing up Linux course:\nSource files, PNG and EPS images.\nRubbish removed." >> "$LOGFILE"
rm "$BZIP"
}

bupbash()
{
DIR="/nethome/tille/xml/db/"
TAR="Bash.tar"
BZIP="$TAR.bz2"
FILES="bash−programming/"
SERVER="rincewind"
RDIR="/var/www/intra/tille/html/training/"

cd "$DIR"
tar cf "$TAR" "$FILES"
echo "Compressing $TAR..." >> "$LOGFILE"
bzip2 "$TAR"
echo "...done." >> "$LOGFILE"
echo "Copying to $SERVER..." >> "$LOGFILE"
scp "$BZIP" "$SERVER:$RDIR" > /dev/null 2>&1
echo "...done." >> "$LOGFILE"

echo −e "Done backing up Bash course:\n$FILES\nRubbish removed." >> "$LOGFILE"
rm "$BZIP"
}

DAY=`date +%w`

if ["$DAY" −lt "2"]; then
 echo "It is `date +%A`, only backing up Bash course." >> "$LOGFILE"
 bupbash
else
 buplinux
 bupbash
fi

echo −e "Remote backup `date` SUCCESS\n−−−−−−−−−−" >> "$LOGFILE"

This script runs from cron, meaning without user interaction, so we redirect standard error from the scp
command to /dev/null.

It might be argued that all the separate steps can be combined in a command such as

tar c dir_to_backup/ | bzip2 | ssh server "cat > backup.tar.bz2"

Bash Guide for Beginners

Chapter 11. Functions 141

However, if you are interested in intermediate results, which might be recovered upon failure of the script, this
is not what you want.

The expression

command &> file

is equivalent to

command > file 2>&1

11.3. Summary

Functions provide an easy way of grouping commands that you need to execute repetitively. When a function
is running, the positional parameters are changed to those of the function. When it stops, they are reset to
those of the calling program. Functions are like mini−scripts, and just like a script, they generate exit or return
codes.

While this was a short chapter, it contains important knowledge needed for achieving the ultimate state of
laziness that is the typical goal of any system administrator.

11.4. Exercises

Here are some useful things you can do using functions:

Add a function to your ~/.bashrc config file that automates the printing of man pages. The result
should be that you type something like printman <command>, upon which the first appropriate man
page rolls out of your printer. Check using a pseudo printer device for testing purposes.

As an extra, build in a possibility for the user to supply the section number of the man page he or she
wants to print.

1.

Create a subdirectory in your home directory in which you can store function definitions. Put a couple
of functions in that directory. Useful functions might be, amongs others, that you have the same
commands as on DOS or a commercial UNIX when working with Linux, or vice versa. These
functions should then be imported in your shell environment when ~/.bashrc is read.

2.

Bash Guide for Beginners

Chapter 11. Functions 142

Chapter 12. Catching signals

In this chapter, we will discuss the following subjects:

Available signals♦
Use of the signals♦
Use of the trap statement♦
How to prevent users from interrupting your programs♦

12.1. Signals

12.1.1. Introduction

12.1.1.1. Finding the signal man page

Your system contains a man page listing all the available signals, but depending on your operating system, it
might be opened in a different way. On most Linux systems, this will be man 7 signal. When in doubt, locate
the exact man page and section using commands like

man −k signal | grep list

or

apropos signal | grep list

Signal names can be found using kill −l.

12.1.1.2. Signals to your Bash shell

In the absence of any traps, an interactive Bash shell ignores SIGTERM and SIGQUIT. SIGINT is caught and
handled, and if job control is active, SIGTTIN, SIGTTOU and SIGTSTP are also ignored. Commands that are
run as the result of a command substitution also ignore these signals, when keyboard generated.

SIGHUP by default exits a shell. An interactive shell will send a SIGHUP to all jobs, running or stopped; see
the documentation on the disown built−in if you want to disable this default behavior for a particular process.
Use the huponexit option for killing all jobs upon receiving a SIGHUP signal, using the shopt built−in.

12.1.1.3. Sending signals using the shell

The following signals can be sent using the Bash shell:

Table 12−1. Control signals in Bash

Standard key
combination

Meaning

Ctrl+C The interrupt signal, sends SIGINT to the job running in the foreground.

Chapter 12. Catching signals 143

Ctrl+Y

The delayed suspend character. Causes a running process to be stopped when it attempts to
read input from the terminal. Control is returned to the shell, the user can foreground,
background or kill the process. Delayed suspend is only available on operating systems
supporting this feature.

Ctrl+Z
The suspend signal, sends a SIGTSTP to a running program, thus stopping it and returning
control to the shell.

Terminal settings

Check your stty settings. Suspend and resume of output is usually disabled if you are using "modern"
terminal emulations. The standard xterm supports Ctrl+S and Ctrl+Q by default.

12.1.2. Usage of signals with kill

Most modern shells, Bash included, have a built−in kill function. In Bash, both signal names and numbers are
accepted as options, and arguments may be job or process IDs. An exit status can be reported using the −l
option: zero when at least one signal was successfully sent, non−zero if an error occurred.

Using the kill command from /usr/bin, your system might enable extra options, such as the ability to kill
processes from other than your own user ID and specifying processes by name, like with pgrep and pkill.

Both kill commands send the TERM signal if none is given.

This is a list of the most common signals:

Table 12−2. Common kill signals

Signal nameSignal value Effect

SIGHUP 1 Hangup

SIGINT 2 Interrupt from keyboard

SIGKILL 9 Kill signal

SIGTERM 15 Termination signal

SIGSTOP 17,19,23 Stop the process

SIGKILL and SIGSTOP

SIGKILL and SIGSTOP can not be caught, blocked or ignored.

When killing a process or series of processes, it is common sense to start trying with the least dangerous
signal, SIGTERM. That way, programs that care about an orderly shutdown get the chance to follow the
procedures that they have been designed to execute when getting the SIGTERM signal, such as cleaning up
and closing open files. If you send a SIGKILL to a process, you remove any chance for the process to do a tidy
cleanup and shutdown, which might have unfortunate consequences.

But if a clean termination does not work, the INT orKILL signals might be the only way. For instance, when a
process does not die using Ctrl+C, it is best to use the kill −9 on that process ID:

maud: ~> ps −ef | grep stuck_process

Bash Guide for Beginners

Chapter 12. Catching signals 144

maud 5607 2214 0 20:05 pts/5 00:00:02 stuck_process

maud: ~> kill −9 5607

maud: ~> ps −ef | grep stuck_process
maud 5614 2214 0 20:15 pts/5 00:00:00 grep stuck_process
[1]+ Killed stuck_process

When a process starts up several instances, killall might be easier. It takes the same option as the kill
command, but applies on all instances of a given process. Test this command before using it in a production
environment, since it might not work as expected on some of the commercial Unices.

12.2. Traps

12.2.1. General

There might be situations when you don't want users of your scripts to exit untimely using keyboard abort
sequences, for example because input has to be provided or cleanup has to be done. The trap statement
catches these sequences and can be programmed to execute a list of commands upon catching those signals.

The syntax for the trap statement is straightforward:

trap [COMMANDS] [SIGNALS]

This instructs the trap command to catch the listed SIGNALS, which may be signal names with or without the
SIG prefix, or signal numbers. If a signal is 0 or EXIT, the COMMANDS are executed when the shell exits. If
one of the signals is DEBUG, the list of COMMANDS is executed after every simple command. A signal
may also be specified as ERR; in that case COMMANDS are executed each time a simple command exits
with a non−zero status. Note that these commands will not be executed when the non−zero exit status comes
from part of an if statement, or from a while or until loop. Neither will they be executed if a logical AND
(&&) or OR (||) result in a non−zero exit code, or when a command's return status is inverted using the !
operator.

The return status of the trap command itself is zero unless an invalid signal specification is encountered. The
trap command takes a couple of options, which are documented in the Bash info pages.

Here is a very simple example, catching Ctrl+C from the user, upon which a message is printed. When you
try to kill this program without specifying the KILL signal, nothing will happen:

#!/bin/bash
traptest.sh

trap "echo Booh!" SIGINT SIGTERM
echo "pid is $$"

while : # This is the same as "while true".
do
 sleep 60 # This script is not really doing anything.
done

Bash Guide for Beginners

Chapter 12. Catching signals 145

12.2.2. How Bash interprets traps

When Bash receives a signal for which a trap has been set while waiting for a command to complete, the trap
will not be executed until the command completes. When Bash is waiting for an asynchronous command via
the wait built−in, the reception of a signal for which a trap has been set will cause the wait built−in to return
immediately with an exit status greater than 128, immediately after which the trap is executed.

12.2.3. More examples

12.2.3.1. Detecting when a variable is used

When debugging longer scripts, you might want to give a variable the trace attribute and trap DEBUG
messages for that variable. Normally you would just declare a variable using an assignment like
VARIABLE=value. Replacing the declaration of the variable with the following lines might provide valuable
information about what your script is doing:

declare −t VARIABLE=value

trap "echo VARIABLE is being used here." DEBUG

rest of the script

12.2.3.2. Removing rubbish upon exit

The whatis command relies on a database which is regularly built using the makewhatis.cron script with
cron:

#!/bin/bash

LOCKFILE=/var/lock/makewhatis.lock

Previous makewhatis should execute successfully:

[−f $LOCKFILE] && exit 0

Upon exit, remove lockfile.

trap "{ rm −f $LOCKFILE ; exit 255; }" EXIT

touch $LOCKFILE
makewhatis −u −w
exit 0

12.3. Summary

Signals can be sent to your programs using the kill command or keyboard shortcuts. These signals can be
caught, upon which action can be performed, using the trap statement.

Some programs ignore signals. The only signal that no program can ignore is the KILL signal.

Bash Guide for Beginners

Chapter 12. Catching signals 146

12.4. Exercises

A couple of practical examples:

Create a script that writes a boot image to a diskette using the dd utility. If the user tries to interrupt
the script using Ctrl+C, display a message that this action will make the diskette unusable.

1.

Write a script that automates the installation of a third−party package of your choice. The package
must be downloaded from the Internet. It must be decompressed, unarchived and compiled if these
actions are appropriate. Only the actual installation of the package should be uninterruptable.

2.

Bash Guide for Beginners

Chapter 12. Catching signals 147

Appendix A. Shell Features

This document gives an overview of common shell features (the same in every shell flavour)
and differing shell features (shell specific features).

A.1. Common features

The following features are standard in every shell. Note that the stop, suspend, jobs, bg and fg commands are
only available on systems that support job control.

Table A−1. Common Shell Features

Command Meaning

> Redirect output

>> Append to file

< Redirect input

<< "Here" document (redirect input)

| Pipe output

& Run process in background.

; Separate commands on same line

* Match any character(s) in filename

? Match single character in filename

[] Match any characters enclosed

() Execute in subshell

` ` Substitute output of enclosed command

" " Partial quote (allows variable and command expansion)

' ' Full quote (no expansion)

\ Quote following character

$var Use value for variable

$$ Process id

$0 Command name

$n nth argument (n from 0 to 9)

$* All arguments as a simple word

Begin comment

bg Background execution

break Break from loop statements

cd Change directories

continue Resume a program loop

echo Display output

eval Evaluate arguments

exec Execute a new shell

Appendix A. Shell Features 148

fg Foreground execution

jobs Show active jobs

kill Terminate running jobs

newgrp Change to a new group

shift Shift positional parameters

stop Suspend a background job

suspend Suspend a foreground job

time Time a command

umask Set or list file permissions

unset Erase variable or function definitions

wait Wait for a background job to finish

A.2. Differing features

The table below shows major differences between the standard shell (sh), Bourne Again SHell (bash), Korn
shell (ksh) and the C shell (csh).

Shell compatibility

Since the Bourne Again SHell is a superset of sh, all sh commands will also work in bash − but not vice
versa. bash has many more features of its own, and, as the table below demonstrates, many features
incorporated from other shells.

Since the Turbo C shell is a superset of csh, all csh commands will work in tcsh, but not the other way
round.

Table A−2. Differing Shell Features

sh bash ksh csh Meaning/Action

$ $ $ %
Default user
prompt

>| >| >! Force redirection

> file
2>&1

&> file or > file 2>&1
> file
2>&1

>& file
Redirect stdout
and stderr to
file

{ } { }
Expand elements
in list

`command``command` or $(command) $(command)`command`
Substitute output
of enclosed
command

$HOME $HOME $HOME $home Home directory

~ ~ ~
Home directory
symbol

~+, ~−, dirs ~+, ~− =−, =N
Access directory
stack

Bash Guide for Beginners

Appendix A. Shell Features 149

var=value VAR=value var=value
set
var=value

Variable
assignment

export var export VAR=value
export
var=val

setenv var
val

Set environment
variable

${nnnn} ${nn}
More than 9
arguments can
be referenced

"$@" "$@" "$@"
All arguments as
separate words

$# $# $# $#argv
Number of
arguments

$? $? $? $status

Exit status of the
most recently
executed
command

$! $! $!

PID of most
recently
backgrounded
process

$− $− $− Current options

. file source file or . file . file
source
file

Read commands
in file

alias x='y' alias x=y alias x y
Name x stands
for command y

case case case
switch or
case

Choose
alternatives

done done done end
End a loop
statement

esac esac esac endsw
End case or
switch

exit n exit n exit n
exit
(expr)

Exit with a
status

for/do for/do for/do foreach
Loop through
variables

set −f, set −o
nullglob|dotglob|nocaseglob|noglob

noglob

Ignore
substitution
characters for
filename
generation

hash hash alias −t hashstat
Display hashed
commands
(tracked aliases)

hash cmds hash cmds
alias −t
cmds

rehash
Remember
command
locations

hash −r hash −r unhash
Forget command
locations

Bash Guide for Beginners

Appendix A. Shell Features 150

history history history
List previous
commands

ArrowUp+Enter or !! r !!
Redo previous
command

!str r str !str
Redo last
command that
starts with "str"

!cmd:s/x/y/ r x=y cmd !cmd:s/x/y/

Replace "x" with
"y" in most
recent command
starting with
"cmd", then
execute.

if [$i −eq
5]

if [$i −eq 5] if ((i==5)) if ($i==5)
Sample
condition test

fi fi fi endif End if statement

ulimit ulimit ulimit limit
Set resource
limits

pwd pwd pwd dirs
Print working
directory

read read read $<
Read from
terminal

trap 2 trap 2 trap 2 onintr Ignore interrupts

unalias unalias unalias Remove aliases

until until until Begin until loop

while/do while/do while/do while
Begin while
loop

The Bourne Again SHell has many more features not listed here. This table is just to give you an idea of how
this shell incorporates all useful ideas from other shells: there are no blanks in the column for bash. More
information on features found only in Bash can be retrieved from the Bash info pages, in the "Bash Features"
section.

More information:

You should at least read one manual, being the manual of your shell. The preferred choice would be info
bash, bash being the GNU shell and easiest for beginners. Print it out and take it home, study it whenever you
have 5 minutes.

Bash Guide for Beginners

Appendix A. Shell Features 151

Appendix B. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111−1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

B.1. Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

B.2. Applicability and definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.

Appendix B. GNU Free Documentation License 152

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

B.3. Verbatim copying

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

B.4. Copying in quantity

If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must

Bash Guide for Beginners

Appendix B. GNU Free Documentation License 153

take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

B.5. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

A.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

B.

State on the Title page the name of the publisher of the Modified Version, as the publisher.C.
Preserve all the copyright notices of the Document.D.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.E.
Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

F.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

G.

Include an unaltered copy of this License.H.
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

I.

Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

J.

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

K.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

L.

Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

M.

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.N.

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these

Bash Guide for Beginners

Appendix B. GNU Free Documentation License 154

sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

B.6. Combining documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

B.7. Collections of documents

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

Bash Guide for Beginners

Appendix B. GNU Free Documentation License 155

B.8. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

B.9. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will prevail.

B.10. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

B.11. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Bash Guide for Beginners

Appendix B. GNU Free Documentation License 156

http://www.gnu.org/copyleft/

B.12. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant Sections being
LIST THEIR TITLES, with the Front−Cover Texts being LIST, and with the Back−Cover
Texts being LIST. A copy of the license is included in the section entitled "GNU Free
Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts
being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Bash Guide for Beginners

Appendix B. GNU Free Documentation License 157

Glossary

This section contains an alphabetical overview of common UNIX commands. More
information about the usage can be found in the man or info pages.

A

a2ps
Format files for printing on a PostScript printer.

acroread
PDF viewer.

adduser
Create a new user or update default new user information.

alias
Create a shell alias for a command.

anacron
Execute commands periodically, does not assume continuously running machine.

apropos
Search the whatis database for strings.

apt−get
APT package handling utility.

aspell
Spell checker.

at, atq, atrm
Queue, examine or delete jobs for later execution.

aumix
Adjust audio mixer.

(g)awk
Pattern scanning and processing language.

B

bash
Bourne Again SHell.

batch
Queue, examine or delete jobs for later execution.

bg
Run a job in the background.

bitmap
Bitmap editor and converter utilities for the X window System.

bzip2
A block−sorting file compressor.

C

cat
Concatenate files and print to standard output.

Glossary 158

cd
Change directory.

cdp/cdplay
An interactive text−mode program for controlling and playing audio CD Roms under Linux.

cdparanoia
An audio CD reading utility which includes extra data verification features.

cdrecord
Record a CD−R.

chattr
Change file attributes.

chgrp
Change group ownership.

chkconfig
Update or query run level information for system services.

chmod
Change file access permissions.

chown
Change file owner and group.

compress
Compress files.

cp
Copy files and directories.

crontab
Maintain crontab files.

csh
Open a C shell.

cut
Remove sections from each line of file(s).

D

date
Print or set system date and time.

dd
Convert and copy a file (disk dump).

df
Report file system disk usage.

dhcpcd
DHCP client daemon.

diff
Find differences between two files.

dig
Send domain name query packets to name servers.

dmesg
Print or control the kernel ring buffer.

du
Estimate file space usage.

Bash Guide for Beginners

Glossary 159

E

echo
Display a line of text.

ediff
Diff to English translator.

egrep
Extended grep.

eject
Unmount and eject removable media.

emacs
Start the Emacs editor.

exec
Invoke subprocess(es).

exit
Exit current shell.

export
Add function(s) to the shell environment.

F

fax2ps
Convert a TIFF facsimile to PostScript.

fdformat
Format floppy disk.

fdisk
Partition table manipulator for Linux.

fetchmail
Fetch mail from a POP, IMAP, ETRN or ODMR−capable server.

fg
Bring a job in the foreground.

file
Determine file type.

find
Find files.

formail
Mail (re)formatter.

fortune
Print a random, hopefully interesting adage.

ftp
Transfer files (unsafe unless anonymous account is used!)services.

G

galeon
Graphical web browser.

gdm
Gnome Display Manager.

(min/a)getty

Bash Guide for Beginners

Glossary 160

Control console devices.
gimp

Image manipulation program.
grep

Print lines matching a pattern.
groff

Emulate nroff command with groff.
grub

The grub shell.
gv

A PostScript and PDF viewer.
gzip

Compress or expand files.

H

halt
Stop the system.

head
Output the first part of files.

help
Display help on a shell built−in command.

host
DNS lookup utility.

httpd
Apache hypertext transfer protocol server.

I

id
Print real and effective UIDs and GIDs.

ifconfig
Configure network interface or show configuration.

info
Read Info documents.

init
Process control initialization.

iostat
Display I/O statistics.

ip
Display/change network interface status.

ipchains
IP firewall administration.

iptables
IP packet filter administration.

J

jar

Bash Guide for Beginners

Glossary 161

Java archive tool.
jobs

List backgrounded tasks.

K

kdm
Desktop manager for KDE.

kill(all)
Terminate process(es).

ksh
Open a Korn shell.

L

ldapmodify
Modify an LDAP entry.

ldapsearch
LDAP search tool.

less
more with features.

lilo
Linux boot loader.

links
Text mode WWW browser.

ln
Make links between files.

loadkeys
Load keyboard translation tables.

locate
Find files.

logout
Close current shell.

lp
Send requests to the LP print service.

lpc
Line printer control program.

lpq
Print spool queue examination program.

lpr
Offline print.

lprm
Remove print requests.

ls
List directory content.

lynx
Text mode WWW browser.

Bash Guide for Beginners

Glossary 162

M

mail
Send and receive mail.

man
Read man pages.

mcopy
Copy MSDOS files to/from Unix.

mdir
Display an MSDOS directory.

memusage
Display memory usage.

memusagestat
Display memory usage statistics.

mesg
Control write access to your terminal.

mformat
Add an MSDOS file system to a low−level formatted floppy disk.

mkbootdisk
Creates a stand−alone boot floppy for the running system.

mkdir
Create directory.

mkisofs
Create a hybrid ISO9660 filesystem.

more
Filter for displaying text one screen at the time.

mount
Mount a file system or display information about mounted file systems.

mozilla
Web browser.

mt
Control magnetic tape drive operation.

mtr
Network diagnostic tool.

mv
Rename files.

N

named
Internet domain name server.

ncftp
Browser program for ftp services (insecure!).

netstat
Print network connections, routing tables, interface statistics, masquerade connections, and multi−cast
memberships.

nfsstat
Print statistics about networked file systems.

nice
Run a program with modified scheduling priority.

Bash Guide for Beginners

Glossary 163

nmap
Network exploration tool and security scanner.

ntsysv
Simple interface for configuring run levels.

P

passwd
Change password.

pdf2ps
Ghostscript PDF to PostScript translator.

perl
Practical Extraction and Report Language.

pg
Page through text output.

ping
Send echo request to a host.

pr
Convert text files for printing.

printenv
Print all or part of environment.

procmail
Autonomous mail processor.

ps
Report process status.

pstree
Display a tree of processes.

pwd
Print present working directory.

Q

quota
Display disk usage and limits.

R

rcp
Remote copy (unsafe!)

rdesktop
Remote Desktop Protocol client.

reboot
Stop and restart the system.

renice
Alter priority of a running process.

rlogin
Remote login (telnet, insecure!).

rm
Remove a file.

Bash Guide for Beginners

Glossary 164

rmdir
Remove a directory.

roff
A survey of the roff typesetting system.

rpm
RPM Package Manager.

rsh
Remote shell (insecure!).

S

scp
Secure remote copy.

screen
Screen manager with VT100 emulation.

set
Display, set or change variable.

setterm
Set terminal attributes.

sftp
Secure (encrypted) ftp.

sh
Open a standard shell.

shutdown
Bring the system down.

sleep
Wait for a given period.

slocate
Security Enhanced version of the GNU Locate.

slrnn
text mode Usenet client.

snort
Network intrusion detection tool.

sort
Sort lines of text files.

ssh
Secure shell.

ssh−keygen
Authentication key generation.

stty
Change and print terminal line settings.

su
Switch user.

T

tac
Concatenate and print files in reverse.

tail
Output the last part of files.

Bash Guide for Beginners

Glossary 165

talk
Talk to a user.

tar
Archiving utility.

tcsh
Open a Turbo C shell.

telnet
User interface to the TELNET protocol (insecure!).

tex
Text formatting and typesetting.

time
Time a simple command or give resource usage.

tin
News reading program.

top
Display top CPU processes.

touch
Change file timestamps.

traceroute
Print the route packets take to network host.

tripwire
A file integrity checker for UNIX systems.

troff
Format documents.

twm
Tab Window Manager for the X Window System.

U

ulimit
Controll resources.

umask
Set user file creation mask.

umount
Unmount a file system.

uncompress
Decompress compressed files.

uniq
Remove duplicate lines from a sorted file.

update
Kernel daemon to flush dirty buffers back to disk.

uptime
Display system uptime and average load.

userdel
Delete a user account and related files.

V

vi(m)
Start the vi (improved) editor.

Bash Guide for Beginners

Glossary 166

vimtutor
The Vim tutor.

vmstat
Report virtual memory statistics.

W

w
Show who is logged on and what they are doing.

wall
Send a message to everybody's terminal.

wc
Print the number of bytes, words and lines in files.

which
Shows the full path of (shell) commands.

who
Show who is logged on.

who am i
Print effective user ID.

whois
Query a whois or nicname database.

write
Send a message to another user.

X

xauth
X authority file utility.

xcdroast
Graphical front end to cdrecord.

xclock
Analog/digital clock for X.

xconsole
Monitor system console messages with X.

xdm
X Display Manager with support for XDMCP, host chooser.

xdvi
DVI viewer.

xfs
X font server.

xhost
Server access control program for X

xinetd
The extended Internet services daemon.

xload
System load average display for X.

xlsfonts
Server font list displayer for X.

xmms
Audio player for X.

Bash Guide for Beginners

Glossary 167

xpdf
PDF viewer.

xterm
Terminal emulator for X.

Z

zcat
Compress or expand files.

zgrep
Search possibly compressed files for a regular expression.

zmore
Filter for viewing compressed text.

Bash Guide for Beginners

Glossary 168

Index

A

aliases
Section 3.5.1

ANSI−C quoting
Section 3.3.5

arguments
Section 7.2.1.2

arithmetic expansion
Section 3.4.7

arithmetic operators
Section 3.4.7

array
Section 10.2.1

awk
Section 6.1

awkprogram
Section 6.1.2

B

bash
Section 1.2

.bash_login
Section 3.1.2.2

.bash_logout
Section 3.1.2.5

.bash_profile
Section 3.1.2.1

.bashrc
Section 3.1.2.4

batch editor
Section 5.1.1

break
Section 9.5.1

boolean operators
Section 7.2.4

Bourne shell
Section 1.1.2

brace expansion
Section 3.4.3

built−in commands
Section 1.3.2

Index 169

C

case statements
Section 7.2.5

character classes
Section 4.2.2.2, Section 4.3.2

child process
Section 1.3.1

combined expressions
Section 7.1.1.1

command substitution
Section 3.4.6

comments
Section 2.2.2

conditionals
Section 7.1

configuration files
Section 3.1

constants
Section 10.1.3

continue
Section 9.5.2

control signals
Section 12.1.1.3

creating variables
Section 3.2.2

csh
The C shell, Section 1.1.2

D

debugging scripts
Section 2.3

declare
Section 10.1.2, Section 10.2.1

double quotes
Section 3.3.4

E

echo
Section 1.5.5, Section 2.1.2, Section 2.3.2, Section 8.1.2

editors
Section 2.1.1

else
Section 7.2.1

emacs
Section 2.1.1

env

Bash Guide for Beginners

Index 170

Section 3.2.1.1
esac

Section 7.2.5
escape characters

Section 3.3.2
escape sequences

Section 8.1.2
/etc/bashrc

Section 3.1.1.2
/etc/passwd

Section 1.1.2
/etc/profile

Section 3.1.1
/etc/shells

Section 1.1.2
exec

Section 1.3.1, Section 8.2.4.2
execute permissions

Section 2.1.3
execution

Section 2.1.3
exit

Section 7.2.5
exit status

Section 7.1.2.1
expansion

Section 1.4.1.5, Section 3.4
export

Section 3.2.3
extended regular expressions

Section 4.1.3

F

file descriptors
Section 8.2.3, Section 8.2.4.1

file name expansion
Section 3.4.9

find and replace
Section 5.2.4

for
Section 9.1

fork
Section 1.3.1

functions
Section 11.1.1

Bash Guide for Beginners

Index 171

G

gawk
Section 6.1.1

gawk commands
Section 6.1.2

gawk fields
Section 6.2.1

gawk formatting
Section 6.2.2

gawk scripts
Section 6.2.5

gawk variables
Section 6.3

gedit
Section 2.1.1

global variables
Section 3.2.1.1

globbing
Section 2.3.2

grep
Section 4.2.1

H

here document
Section 8.2.4.4

I

if
Section 7.1.1

init
Section 1.3.1, Section 1.5.6

initialization files
Section 3.1

input field separator
Section 3.2.4.1, Section 3.2.5, Section 6.3

interactive editing
Section 5.2

interactive scripts
Section 8.1

interactive shell
Section 1.2.2.2.1, Section 1.2.2.2.2, Section 1.2.2.3.3

invocation
Section 1.2.2.1

Bash Guide for Beginners

Index 172

J

K

kill
Section 12.1.2

killall
Section 12.1.2

ksh
Korn shell, Section 1.1.2

L

length of a variable
Section 10.3.2

line anchors
Section 4.2.2.1

locale
Section 3.3.6

locate
Section 2.1.1

logic flow
Section 1.5.4

login shell
Section 1.2.2.2.1

M

menu
Section 9.6

metacharacters
Section 4.1.2

N

nested if statements
Section 7.2.3

noglob
Section 2.3.2

non−interactive editing
Section 5.3

non−interactive shell
Section 1.2.2.2.3

non−login shell
Section 1.2.2.2.2

numeric comparisons
Section 7.1.2.2

Bash Guide for Beginners

Index 173

O

options
Section 3.6.1

output field separator
Section 6.3.2.1

output record separator
Section 6.3.2.2

P

parameter expansion
Section 3.4.5

PATH
Section 2.1.2

pattern matching
Section 4.3

positionalparams
Section 3.2.5, Section 11.1.3

POSIX
Section 1.2.1

POSIX mode
Section 1.2.2.2.5

primary expressions
Section 7.1.1.1

printenv
Section 3.2.1.1

printf
Section 1.5.5, Section 6.3.6

process substitution
Section 3.4.8

.profile
Section 3.1.2.3

prompt
Section 3.1.3

Q

quoting characters
Section 3.3

R

redirection
Section 1.4.1.7, Section 3.6.2, Section 8.2.3, Section 9.4

rbash
Section 1.2.2.10

read
Section 8.2.1

Bash Guide for Beginners

Index 174

readonly
Section 10.1.3

regular expression operators
Section 4.1.2, Section 5.2, Section 6.2.4

regular expressions
Section 4.1

remote invocation
Section 1.2.2.2.6

removing aliases
Section 3.5.2

reserved variables
Section 3.2.4

return
Section 11.1.3

S

sed
Section 5.1

sed editing commands
Section 5.1.2

sed options
Section 5.1.2

sed script
Section 5.3.2

select
Section 9.6

set
Section 3.2.1.2, Section 3.6.1, Section 11.1.4

shift
Section 9.7

signals
Section 12.1.1

single quotes
Section 3.3.3

source
Section 2.1.3

special parameters
Section 3.2.5

special variables
Section 3.2.5

standard error
Section 8.2.3.1

standard input
Section 8.2.3.1

standard output
Section 8.2.3.1

string comparisons
Section 7.1.2.3

stty

Bash Guide for Beginners

Index 175

Section 12.1.1
submenu

Section 9.6.2
subshell

Section 2.2.1
substitution

Section 10.3.3.1, Section 10.3.3.3
substring

Section 10.3.3.2
syntax

Section 1.4.1.1

T

tcsh
Section 1.1.2

terminology
Section 1.5.3

then
Section 7.1.1.2

tilde expansion
Section 3.4.4

transformation of variables
traps

Section 12.2.1
true

U

unalias
Section 3.5.1, Section 3.5.2

unset
Section 3.2.2, Section 10.2.3, Section 11.1.4

until
Section 9.3

user input
Section 8.2.1, Section 8.2.2

user messages
Section 8.1.1

V

variables
Section 3.2, Section 10.1

variable expansion
Section 3.4.5

verbose
Section 2.3.2

vi(m)

Bash Guide for Beginners

Index 176

Section 2.1.1

W

wait
Section 12.2.2

whereis
Section 2.1.1

which
Section 2.1.1

while
Section 9.2

wildcards
Section 4.2.2.2

word anchors
Section 4.2.2.1

word splitting
Section 3.4.9

X

xtrace
Section 2.3.1, Section 2.3.2

Y

Z

Bash Guide for Beginners

Index 177

	Table of Contents
	Introduction
	1. Why this guide?
	2. Who should read this book?
	3. New versions and availability
	4. Revision History
	5. Contributions
	6. Feedback
	7. Copyright information
	8. What do you need?
	9. Conventions used in this document
	10. Organization of this document

	Chapter 1. Bash and Bash scripts
	1.1. Common shell programs
	1.1.1. General shell functions
	1.1.2. Shell types

	1.2. Advantages of the Bourne Again SHell
	1.2.1. Bash is the GNU shell
	1.2.2. Features only found in bash

	1.3. Executing commands
	1.3.1. General
	1.3.2. Shell built-in commands
	1.3.3. Executing programs from a script

	1.4. Building blocks
	1.4.1. Shell building blocks

	1.5. Developing good scripts
	1.5.1. Properties of good scripts
	1.5.2. Structure
	1.5.3. Terminology
	1.5.4. A word on order and logic
	1.5.5. An example Bash script: mysystem.sh
	1.5.6. Example init script

	1.6. Summary
	1.7. Exercises

	Chapter 2. Writing and debugging scripts
	2.1. Creating and running a script
	2.1.1. Writing and naming
	2.1.2. script1.sh
	2.1.3. Executing the script

	2.2. Script basics
	2.2.1. Which shell will run the script?
	2.2.2. Adding comments

	2.3. Debugging Bash scripts
	2.3.1. Debugging on the entire script
	2.3.2. Debugging on part(s) of the script

	2.4. Summary
	2.5. Exercises

	Chapter 3. The Bash environment
	3.1. Shell initialization files
	3.1.1. System-wide configuration files
	3.1.2. Individual user configuration files
	3.1.3. Changing shell configuration files

	3.2. Variables
	3.2.1. Types of variables
	3.2.2. Creating variables
	3.2.3. Exporting variables
	3.2.4. Reserved variables
	3.2.5. Special parameters
	3.2.6. Script recycling with variables

	3.3. Quoting characters
	3.3.1. Why?
	3.3.2. Escape characters
	3.3.3. Single quotes
	3.3.4. Double quotes
	3.3.5. ANSI-C quoting
	3.3.6. Locales

	3.4. Shell expansion
	3.4.1. General
	3.4.2. Brace expansion
	3.4.3. Tilde expansion
	3.4.4. Shell parameter and variable expansion
	3.4.5. Command substitution
	3.4.6. Arithmetic expansion
	3.4.7. Process substitution
	3.4.8. Word splitting
	3.4.9. File name expansion

	3.5. Aliases
	3.5.1. What are aliases?
	3.5.2. Creating and removing aliases

	3.6. More Bash options
	3.6.1. Displaying options
	3.6.2. Changing options

	3.7. Summary
	3.8. Exercises

	Chapter 4. Regular expressions
	4.1. Regular expressions
	4.1.1. What are regular expressions?
	4.1.2. Regular expression metacharacters
	4.1.3. Basic versus extended regular expressions

	4.2. Examples using grep
	4.2.1. What is grep?
	4.2.2. Grep and regular expressions

	4.3. Pattern matching using Bash features
	4.3.1. Character ranges
	4.3.2. Character classes

	4.4. Summary
	4.5. Exercises

	Chapter 5. The GNU sed stream editor
	5.1. Introduction
	5.1.1. What is sed?
	5.1.2. sed commands

	5.2. Interactive editing
	5.2.1. Printing lines containing a pattern
	5.2.2. Deleting lines of input containing a pattern
	5.2.3. Ranges of lines
	5.2.4. Find and replace with sed

	5.3. Non-interactive editing
	5.3.1. Reading sed commands from a file
	5.3.2. Writing output files

	5.4. Summary
	5.5. Exercises

	Chapter 6. The GNU awk programming language
	6.1. Getting started with gawk
	6.1.1. What is gawk?
	6.1.2. Gawk commands

	6.2. The print program
	6.2.1. Printing selected fields
	6.2.2. Formatting fields
	6.2.3. The print command and regular expressions
	6.2.4. Special patterns
	6.2.5. Gawk scripts

	6.3. Gawk variables
	6.3.1. The input field separator
	6.3.2. The output separators
	6.3.3. The number of records
	6.3.4. User defined variables
	6.3.5. More examples
	6.3.6. The printf program

	6.4. Summary
	6.5. Exercises

	Chapter 7. Conditional statements
	7.1. Introduction to if
	7.1.1. General
	7.1.2. Simple applications of if

	7.2. More advanced if usage
	7.2.1. if/then/else constructs
	7.2.2. if/then/elif/else constructs
	7.2.3. Nested if statements
	7.2.4. Boolean operations
	7.2.5. Using the exit statement and if

	7.3. Using case statements
	7.3.1. Simplified conditions
	7.3.2. Initscript example

	7.4. Summary
	7.5. Exercises

	Chapter 8. Writing interactive scripts
	8.1. Displaying user messages
	8.1.1. Interactive or not?
	8.1.2. Using the echo built-in command

	8.2. Catching user input
	8.2.1. Using the read built-in command
	8.2.2. Prompting for user input
	8.2.3. Redirection and file descriptors
	8.2.4. File input and output

	8.3. Summary
	8.4. Exercises

	Chapter 9. Repetitive tasks
	9.1. The for loop
	9.1.1. How does it work?
	9.1.2. Examples

	9.2. The while loop
	9.2.1. What is it?
	9.2.2. Examples

	9.3. The until loop
	9.3.1. What is it?
	9.3.2. Example

	9.4. I/0 redirection and loops
	9.4.1. Input redirection
	9.4.2. Output redirection

	9.5. Break and continue
	9.5.1. The break built-in
	9.5.2. The continue built-in
	9.5.3. Examples

	9.6. Making menus with the select built-in
	9.6.1. General
	9.6.2. Submenus

	9.7. The shift built-in
	9.7.1. What does it do?
	9.7.2. Examples

	9.8. Summary
	9.9. Exercises

	Chapter 10. More on variables
	10.1. Types of variables
	10.1.1. General assignment of values
	10.1.2. Using the declare built-in
	10.1.3. Constants

	10.2. Array variables
	10.2.1. Creating arrays
	10.2.2. Dereferencing the variables in an array
	10.2.3. Deleting array variables
	10.2.4. Examples of arrays

	10.3. Operations on variables
	10.3.1. Arithmetic on variables
	10.3.2. Length of a variable
	10.3.3. Transformations of variables

	10.4. Summary
	10.5. Exercises

	Chapter 11. Functions
	11.1. Introduction
	11.1.1. What are functions?
	11.1.2. Function syntax
	11.1.3. Positional parameters in functions
	11.1.4. Displaying functions

	11.2. Examples of functions in scripts
	11.2.1. Recycling
	11.2.2. Setting the path
	11.2.3. Remote backups

	11.3. Summary
	11.4. Exercises

	Chapter 12. Catching signals
	12.1. Signals
	12.1.1. Introduction
	12.1.2. Usage of signals with kill

	12.2. Traps
	12.2.1. General
	12.2.2. How Bash interprets traps
	12.2.3. More examples

	12.3. Summary
	12.4. Exercises

	Appendix A. Shell Features
	A.1. Common features
	A.2. Differing features

	Appendix B. GNU Free Documentation License
	B.1. Preamble
	B.2. Applicability and definitions
	B.3. Verbatim copying
	B.4. Copying in quantity
	B.5. Modifications
	B.6. Combining documents
	B.7. Collections of documents
	B.8. Aggregation with independent works
	B.9. Translation
	B.10. Termination
	B.11. Future revisions of this license
	B.12. How to use this License for your documents

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

