MimerDesk Localization Guidelines

Teemu Arina <teemu at ionstream.fi>, Mikael Séderholm <mikke at ionstream.fi>

This document describes the MimerDesk localization guidelines: How to localize MimerDesk and how to code
localization ready applications.

Contents
1 Overview of Internationalization & Localization 2
2 What might be the shortest way to localize MimerDesk? 2
3 So what did the developers choose to fix this Localization problem? 3
4 Gettext system 3
41 Howitworks. e 3
4.2 Translating dynamic content (applications) L 0. 3
4.2.1 Tools for editing .pofiles 5
4.2.2 Other useful resources L 6
4.3 Translating static content (templates) L Lo 6
4.3.1 Howitworks e e e e 6
4.3.2 How to translate templates L 6
4.4 How to use the gettext system in your applications 6
5 Translating button images 7
5.1 buttons.txt L L L e e e 8
5.2 menucategory.txt L. L e e 8
5.3 menuitem.IXt L L e e e e e e 8
6 How to add new languages 8
7 Tools for translators included in MimerDesk 9
7.1 Introduction L L e 9
7.1.1 bin/check po_syntax [language]o oL 9
7.1.2 bin/compare_po_entries [language] o oo o 9
7.1.3 bin/addlang2tmpls —lang=xx TEMPLATES DIRECTORY 9

7.1.4 bin/addlang2locale -lang=xx LOCALE_DIRECTORY 9

1. Overview of Internationalization & Localization 2

715 bin/mton FILES... 10

8 Documentation system 10
81 Howitworks. e e e e 10
8.2 How to translate documents e 10

1 Overview of Internationalization & Localization

Today it is hard to find software that supports many languages. Due to the cost of translating software and
difficulties in production of a fully localized application for wide variety of languages from western to Asian most
developers skip this absolutely necessary feature completely.

Internationalization (118N, "i" + 18 letters 4+ "n") a.k.a. Globalization means designing and developing a software
product to function in multiple locales ! . This process involves identifying the locales that must be supported,
designing features which support those locales, and writing code that functions equally well in any of the supported
locales. This means a lot of work with character sets and proper transmission. Since computers were created to
work with a small character set in the beginning, there are historical reasons why bringing chinese, english and
russian text to the end user is so difficult. There are also problems between languages. For example, you don’t
read from left to right in every language. Some languages have symbols that present a complete word or a part
of a word. In addition, there are difficulties when we talk about searching documents: Chinese and some other
Asian languages lack spaces and that's why it's difficult to create a good search index that supports all of the
languages. You might also know that date, currencies and how you display them correctly in the current locale is
different in many countries. How frustrating for a programmer.

Localization (L1ON, "I" + 10 letters + "n") means modifying or adapting a software product to fit the require-
ments of a particular locale. This process includes (but may not be limited to) translating the user interface,
documentation and packaging, changing dialog box geometries, customizing features (if necessary), and testing
the translated product to ensure that it still works (at least as well as the original). There are many issues in
localization as well that render the job very difficult to complete successfully. For example, ""Desktop for user
J.Random" is "J.Randomin ty6pdyta" and "Desktop for user Kalle Kivinen" is "Kalle Kivisen tyép6yta" in Finnish.
These examples show that everything cannot be directly translated in every situation. There is need for different
text formatting and parsing in many languages, not just Finnish. This is especially true for dynamic generation
of text.

2 What might be the shortest way to localize MimerDesk?

Ok. Now for the fun part. How MimerDesk developers are going to complete this difficult task? One approach
might be maintaining several code trees for every language and code all the special cases differently in every
code tree. This might work for a couple of languages if the program is small. No need for tricky stuff. But the
maintaining of several code trees of the same product should soon ring the bells that there is something done
wrong here. When the program size grows and clients ask support for more languages everything crashes on the
developers and the development slows down. You guessed it, we are definitely not going to take this path.

'Locale: A set of conventions affected or determined by human language and customs, as defined within a particular
geo-political region. These conventions include (but are not necessarily limited to) the written language, formats for
dates, numbers and currency, sorting orders, etc.

3. So what did the developers choose to fix this Localization problem? 3

3 So what did the developers choose to fix this Localization prob-
lem?

We are no way language experts. We are no way maniacs who try to implement a perfect localization approach

because that would take a decade to complete. We are lazy. That's what we are and that's why we are going to

implement a system that is near perfect but easy to use at the same time. Our system consists of the following
parts:

o Gettext system similar to Unix standard localization approach for dynamically generated text

Gettext system similar to Unix standard localization approach for static text inside the templates

Button generator for generating the translations of the hundreds of button images in MimerDesk

Template parser that creates translated templates for every language into database for speed (No need to
parse templates every time a page is loaded)

XML based documentation system that enables the transform of the documentation to several formats and
languages

4 Gettext system

4.1 How it works

The Gettext system is quite simple. First you use the new gettext() function to create an object. This is done by
giving parameters to the function so it knows what language translation to read and what the program is (from
what directory to load the translation). Then you use gettext() in place of the normal strings you have in your
application. You give the original text as the parameter (like 'Welcome to MimerDesk'. MimerDesk uses English
as the original language) and the function returns the translated text if it was found. If no translation is found
gettext() will return the parameter you gave.

The Gettext system loads .po files for the application. Po files contain the original text and the translation for
every language. Po files have their own syntax defined by a standard described in the next section.

4.2 Translating dynamic content (applications)

When an application is gettext ready it is fairly simple to translate the content. There is a folder for localization
of programs which is called locale. The folder includes a sub folder for every program. A program folder has a .po
file for every language, where the first part of the filename is a language code. When making a new translation
of the program, you should copy the original file, en.po, to a .po file with the correct language code. When you
open an en.po file you should see a few lines with info about the file which is not relevant for the translator and
should be left untouched. After the info lines comes the text to be translated. Each translatable entry consists
of three parts, the first line shows on which line the text appears in the program code : #. calendar.html:49 ,in
this case line 49, this line should not be edited. The second line contains the original text, and it is also the the
id for the text in the code: msgid "Personal - Calendar" , this line should not be edited, if you edit this line the

4. Gettext system 4

program will fail to find the correct translation. The third line is the text that will be translated: msgstr " Personal
- Calendar" , as you see it is the same as the id line because the file was copied from the en.po. In the following
example is the first translated entry from the program calendar and the file fi.po:

#. calendar.html:49
msgid "Personal - Calendar"
msgstr "Henkilokohtaiset - Kalenteri

Every entry in the file should be translated like this one.

Some entries can have some special handles to retrieve dynamic data from the program, for example in the same
calendar program in file fi.po:

#. calendar.html:233
#, c-format
msgid "%s’s calendar"

msgstr "Kalenteri: Ys"

Here the three lines should be left untouched and the fourth line should be translated. The example output of
the program might be: Kalenteri: Pekka. Things like the %s should never be edited but used so that the end
result will look good in the final output, figure out what the meaning of these are and translate so that the result
is right in the language in question. The Swedish translation of the use of these special symbols would look like
this:

#. calendar.html:233
#, c-format
msgid "%s’s calendar"

msgstr "kalender for %s"

You should also note that there can be other %[letter] codes used as well like %d. Just treat them similar to the
%s example. View printf(3) manual page if you want to know more about these magic formatting codes.

Also, because the character "is special (it identifies when a line starts and when it ends) you have to treat it
specially. Escape it with the symbol \:

#. files.html:245

#, c-format

msgid "File \"%s\" not found!"

msgstr "Tiedostoa \"s\" ei 1dytynyt!"

This will translate to Tiedostoa " %s" ei I6ytynyt!

Logically, this makes the symbol \ a special character, so if you want to use it you have to treat it specially:

#. files.html:230
#, c-format
msgid "Folder \\users\\Js does not exist!"

msgstr "Hakemisto \\users\\&s ei ole olemassa!"

4. Gettext system 5

This will translate to Hakemisto \users\ %s ei ole olemassa!.

Another special flag you might notice is the fuzzy flag. Here is an example of a fuzzy entry:

#. users.html:230
#, fuzzy
msgid "Username not specified!"

msgstr "Username not specified!"

This special flag indicates, that the translation is untranslated, incomplete or the translator is not so sure about
the correct translation. Once the translator has translated the entry and is happy with it, she should remove the
#, fuzzy line:

#. users.html:230
msgid "Username not specified!"

msgstr "Kidyttdjidnimed ei ole mddritetty!"
You can also add your own comments, if you want:

I’m not so sure about this... well
#. users.html:230
msgid "Username not specified!"

msgstr "Kidyttdjidnimed ei ole mddritetty!"

You should be aware that if you edit the .po files in a windows environment the files don’t work as such because
a windows specific newline character is created in the end of every line (\r\n). This end-of-line is different in unix
systems (\n). This is not a problem in the official MimerDesk development because the files are usually checked
and all such line endings are converted to unix line endings. If you work with the developers of MimerDesk, try to
find a way to save the file in unix text format or use the rnton utility before sending translated files to developers.

Note: If you run a test environment of your own, you should check for errors like this if you have made translations
and the po file isn't working as you thought it should work.

4.2.1 Tools for editing .po files

KBabel (rhttp://i18n.kde.org/tools/kbabel)is a very good tool for editing .po files. Main part is a powerful
and comfortable PO file editor which features full navigation capabilities, full editing functionality, possibility to
search for translations in different dictionaries, spell (uses ispell) and syntax checking, showing diffs and many
more. Also included is a "Catalog Manager", a file manager view which helps keeping an overview of PO files.
KBabel will help you to translate fast and also keep consistent translations. You can even go through the complete
translation by only looking for fuzzy entries.

Muli (http://muli.sourceforge.net) is a nice alternative to KBabel.

gtranslator (http://www.gtranslator.org) is a gettext po file editor for the GNOME desktop environment. It
handles all kind/metamorphotic forms of po files like compiled gettext po files (gmo/mo files), compressed po
files (po.gz/po.bz2 etc.) and features many comfortable features like find, replace, auto translation, learning,
messages table, easy navigation and easy editing of the messages.

KTranslator (http://www.geocities.com/bilibao) is a basic PO file editor.

4. Gettext system 6

poEdit (http://poedit.sourceforge.net) is cross-platform gettext catalogs (.po files) editor. It is built with
wxWindows toolkit and can run on any platform supported by it (although it was only tested on Unix with GTK+
and Windows). It aims to provide more convenient approach to editing catalogs than launching vi and editing the
file by hand.

emacs contains a gettext editing mode for PO files if you are a regular emacs user.

4.2.2 Other useful resources

GNU Gettext home page (http://www.gnu.org/software/gettext) This is the original GNU Gettext home page.
Contains the very complete manual about GNU Gettext and about the tools included in it.

Mimers brunn translator tools (http://mimersbrunn.sourceforge.net) contains a couple nice tools for transla-
tors.

The Translation Project (http://www.iro.umontreal.ca/contrib/po/HTML /index.html) is an effort to get all
software translators together.

4.3 Translating static content (templates)
4.3.1 How it works

First the template system reads in all the template files and parses the templates searching for language IDs
(Numbers surrounded with "%%". Example: %%33%%). Then it creates a template entry into the database for
each of the languages based on the PO files containing the language ID as msgid. When MimerDesk generates
dynamic content it reads the template for the specified language directly from the database instead of parsing
every template each time separately and adding the translation. Parsing the templates during the installation is
faster than on the fly each time the program is running.

4.3.2 How to translate templates

The template system in MimerDesk is very similar to the application system. You translate po files but this time
the po files are located in templates directory. The templates directory contains various folders which each contain
a subfolder called locale. The locale directory contains the po files for translation. The translation process for
translating po files of templates is a little bit different but you can use the same tools and methods for editing
the files:

e Template PO files do not contain c-formatted strings. There is no dynamically generated text inside the
template strings so c-formatting is not needed

e You can't use multi-line entries as you can use in application po files (dynamic content)

e A translation must exists for each language ID or the templates will broke up. Installation will warn if a
translation is missing

4.4 How to use the gettext system in your applications

e Open your program

5. Translating button images 7

e Add a new global called $TRANS into use wars

e After authenticate function, add the following lines:

$TRANS = 1lib::MimerDesk->new_gettext(
program => ’yourprogramname’,

language => $config{’language’});
$APPLICATION = $TRANS->gettext("Cat-Prog");

e It is obvious that you change 'yourprogramname’ (which is by the way the subdirectory you have to create
under directory locale/)and 'Category - Program Name' to what ever your program is

e Where ever you have dynamically generated text in your application, use the gettext() function like this:

print ’Dynamic text’; change to -->
print $TRANS->gettext(’Dynamic text?’);

If you have variables inside strings:
$text = "Text $name"; change to -->
$text = sprintf ($TRANS->gettext("Text %s"), $name);

Naturally you know how sprintf() works =)
print "Text $name"; Use printf()-->
printf ($TRANS->gettext ("Text %s"), $name);

o Caution: Avoid passing complete sentences / words as input to gettext(). Example "Don't do this":

@array = qw(User Name Rights);
$TRANS->gettext($_) foreach Qarray;

e If you use variables as input to the gettext() function, you have to add the needed entries by hand into the
.po files. You can avoid this by coding you application so that you don’t need to do this

o Create .po files into locale/yourprogramname using extra/pl2po.pl script. Use it like this:

bin/pl2po.pl -1 --target=locale yourprogram.html

5 Translating button images

It's propably just pain for your mental health and for your hands to manually translate the hundreds
of images included in MimerDesk with a paintbrush application. That’s why we created Buttongen
(http://freshmeat.net/projects/buttongen), a simple tool for generating buttons. Buttongen, MimerDesk
tiles and scripts for MimerDesk purpouse are not included in MimerDesk distribution or separately for public be-
cause the tool is not completely finished yet. Anyway, it’s possible to translate the buttons by adding new files to di-
rectory locale_ buttons based on the english version (e.g. cp -rf locale_buttons/en locale_buttons/itfor
Italy) and sending the files to the MimerDesk team.

locale _buttons contains directories which each contain the following files:

6. How to add new languages 8

5.1 buttons.txt

This file has the format of "English translation = Translation of the string". Example:

Show groups = Show groups

In finnish:

Show groups = Ndytd ryhmit

5.2 menucategory.txt

This file has the format of "button image = button name = Translation". Example:

con-end = midconfig = Config

In finnish:

con-end = midconfig = Asetukset

5.3 menuitem.txt

This file has the format of "button name = Translation". Example:

botsessions Sessions

In finnish:

botsessions = Istunnot

6 How to add new languages

Adding new languages to MimerDesk is easy. Basically you dublicate the english .po files and pictures as your
translation, translate the files and add a line to mimerdesk.languages.

1. Find out the short two letter specification code for the language you are translating (e.g it for Italy and fi
for Finnish). You will need it many times

2. In the directory static/pictures, create a new directory with the same name as the new language code.
Copy the contents from directorystatic/pictures/en to the new directory (e.g. cp -r static/pictures/en
static/pictures/itfor Italy)

3. Do the same thing in static/pictures2 (e.g. cp -r static/pictures2/en static/pictures2/itfor ftaly)

4. Go to the locale/ directory. Create a new .po file (copy the contents of en.po, e.g. cp en.po it.pofor
Italy) for the new language for every MimerDesk module in the subdirectories or use addlang2locale utility

7. Tools for translators included in MimerDesk 9

5. Go to the templates/ directory. Create a new .po file (copy the contents of en.po, e.g. cp en.po it.pofor
Italy) for the new language for every MimerDesk module in the subdirectory locale/ of the subdirectories
or use addlang2tmpls utility

6. Add the language and browser character-set to config/mimerdesk.languages

7. Start translating. Refer to the other sections in this document to know how to do it

7 Tools for translators included in MimerDesk

7.1 Introduction

MimerDesk included a couple useful tools for translators to maintain their translations. These tools are especially
handy when updating an out-dated translation or verifying that the po files follow the correct syntax rules. Some
of these tools require the GNU Gettext to be installed.

7.1.1 bin/check _po_syntax [language]

This command checks the syntax of the po files and if all files passed, displays the number of translated messages
and number of fuzzy messages.

If no parameter is given it checks po files of all of the languages. If language id is given (example: fi for finnish)
it checks only po files of a particular language. This utility is useful for finding any syntactic typos in the po files
and for finding out how many untranslated (fuzzy) entries there are still left.

7.1.2 bin/compare_ po_ entries [language]

This command compares language po files against en.po in each directory. This tool is good for finding entries
that are dublicate (same msgid for two or more entries) or entries that are in en.po but not in the translated po
file. This helps you to update out-dated translation which might be missing some new entries added to the po
files.

If no parameter is given it compares po files of all of the languages. If language id is given (example: fi for
finnish) it compares only po files of a particular language. Your translation is propably complete if all the entries
are translated and this tool is not producing any errors.

7.1.3 bin/addlang2tmpls -lang=xx TEMPLATES _DIRECTORY

This tool is good for adding the new po files to every locale/ directory in templates/ based on the original en.po
files. Lang parameter takes a two letter langauge id (example: fi for finnish) and TEMPLATES DIRECTORY is
the directory where the templates are located, e.g.templates/.

7.1.4 bin/addlang2locale -lang=xx LOCALE _DIRECTORY

This tool is good for adding the new po files to every directory in locale/ based on the original en.po files. Lang
parameter takes a two letter langauge id (example: fi for finnish) and LOCALE DIRECTORY is the directory
where the locales are located, e.g.locale/.

8. Documentation system 10

7.1.5 bin/rnton FILES...

If you have edited the po files in Windows and you were not able to save them in the unix text format, then this
utility is just for you. It does the conversion of the line endings for you. FILES is a list of files to convert separated
with spaces.

8 Documentation system

Not yet ready. We are planning to do a XML based documentation system.

8.1 How it works

8.2 How to translate documents

